SUSY searches at CMS

Alessandro Gaz University of Colorado

On behalf of the CMS Collaboration IPA2014, London, August 21st 2014

- Motivations;
- The CMS detector and dataset;
- Analysis strategies;
- SUSY searches at CMS:
 - Inclusive (hadronic) searches;
 - Searches in final states with leptons;
 - Searches in final states with photons;
 - Searches in final states with Higgs bosons;
- Conclusions and Outlook.

Motivations

- The strongest motivation for Supersymmetry (SUSY) comes from the need to stabilize the mass of the Higgs boson (the Hierarchy Problem);
- The mass of the Higgs boson receives quadratic radiative corrections from particles at higher energy scales;
- Unless some miraculous fine tuning of the parameters is in place, the mass of the Higgs boson is expected to drift away from ~125.6 GeV;
- SUSY is a symmetry that exchanges fermions with bosons;
- If we postulate that every fermion (boson) has a boson (fermion) partner, the quadratic divergences become logarithmic.

Motivations

- In order to be "natural" (i.e. to avoid fine tuning), it is required that the mass of the stops is relatively small (not higher than the TeV scale); ≳n
- Similar requirements are valid for the mass of the sbottom(s), the higgsinos, and the gluinos;
- Many SUSY realizations also require R-parity conservation. This implies that SUSY particles are produced in pairs, and the lightest supersymmetric particle (LSP) is stable;
- The LSP could be an ideal candidate for the Dark Matter.

The CMS Detector at the LHC

CMS Integrated Luminosity, pp, 2012, $\sqrt{s}=$ 8 TeV

General purpose detector, very broad SM physics program (including Higgs)... and a vast array of New Physics searches!

Analysis strategies

- Today I will focus on R-parity conserving SUSY searches;
- The lightest SUSY particle (LSP) is stable and neutral and the main signature in pp collisions consists in a significant amount of missing transverse energy (MET);
- We often reparameterize MET into alternative variables (M_{τ2}, R, ...) to exploit particular topologies we are searching for;
- Several sources of SM backgrounds:
 - multijet QCD (with MET arising from jet energy mismeasurements);
 - → $t\bar{t}$, single top, W+jet;
 - → $Z \rightarrow vv + jets;$
 - diboson production;
 - lepton/photon misidentification;
- For the background estimation, we rely as much as possible on background data control samples, often utilizing "transfer factors" taken from the simulation.

• We interpret the results of our analyses in the context of:

Full Models: (pMSSM, cMSSM, mSugra, ...), the whole SUSY spectrum and all possible decays are considered Simplified Models (SMS's): focus on very specific decays, strong assumptions are made

Today I will focus on SMS interpretations.

Γ Inclusive Hadronic searches: M_{T2}

Target: production of squark pairs and gluinos in fully hadronic final states;

 Main discriminating variable, designed to be robust against jet energy mismeasurements:

$$M_{\text{T2}}(m_{\tilde{\chi}}) = \min_{\vec{p}_{\text{T}}^{\tilde{\chi}^{(1)}} + \vec{p}_{\text{T}}^{\tilde{\chi}^{(2)}} = \vec{p}_{\text{T}}^{\text{miss}}} \left[\max\left(M_{\text{T}}^{(1)}, M_{\text{T}}^{(2)}\right) \right]$$
$$(M_{\text{T}}^{(i)})^{2} = (m^{\text{vis}(i)})^{2} + m_{\tilde{\chi}}^{2} + 2\left(E_{\text{T}}^{\text{vis}(i)}E_{\text{T}}^{\tilde{\chi}^{(i)}} - \vec{p}_{\text{T}}^{\text{vis}(i)} \cdot \vec{p}_{\text{T}}^{\tilde{\chi}^{(i)}}\right) \qquad \text{CMS-SUS-13-019}$$

Inclusive Hadronic searches: M₁

A. Gaz – University of Colorado

IPA 2014

A. Gaz - University of Colorado

11

For the interpretation, only the signal regions expected to be sensitive to the signature under study are used:

Search for direct b production

- Target: direct sbottom pair production;
- Main discriminating variable:

 $M_{CT}^{2}(J_{1}, J_{2}) = [E_{T}(J_{1}) + E_{T}(J_{2})]^{2} - [\mathbf{p}_{T}(J_{1}) - \mathbf{p}_{T}(J_{2})]^{2}$ = $2p_{T}(J_{1})p_{T}(J_{2})(1 + \cos\Delta\phi(J_{1}, J_{2}))$

• Dominant backgrounds: Z(vv)+jets, W(lv)+jets, tt, estimated from single μ data.

Selection:

- exactly 2 jets with $p_{\tau} > 70 \text{ GeV}$;
- $\Delta \phi(j_1, j_2) < 2.5;$
- at least one of the jets is a b-jet;
- HT > 250 GeV, MET > 175 GeV, MT (j₂,MET) > 200 GeV.

IPA 2014

A. Gaz – University of Colorado

Search for monojet $\widetilde{t} \rightarrow c \widetilde{\chi}_{1}^{0}$

- 1 CMS
- Target: direct stop pair production. Very compressed scenario: $10 < m_{stop} - m_{LSP} < 80 \text{ GeV}$, so $\tilde{t} \rightarrow c \tilde{\chi}_{1}^{0}$;
- The decay products of the stop will be very soft;
- "Invisible decay" recoiling against an ISR jet (monojet signature);
- Dominant backgrounds:
 - → Z(vv)+jets, estimated using Z → $\mu\mu$ data;
 - W(lv)+jets, estimated with the "lost lepton" method on single μ data;

A. Gaz - University of Colorado

D Search for monojet $\widetilde{t} \rightarrow c \widetilde{\chi}^0$

• No significant excess is seen over the predicted SM background;

The acceptance is higher for higher stop mass and lower mass splitting (the events are more monojet-like).

A. Gaz – University of Colorado

Other squark and gluino searches

CMS

More results on direct stop production and gluino pair production:

with Razor fully hadronic

(CMS-SUS-13-004).

() 9 1200 9 1200 1200 95% C.L. NLO+NLL exclusion ____100% ĝ → bb̄χ̃ m_{...±}-m_{...⁰} = 5 GeV 50% \tilde{g} → tb $\tilde{\chi}^{\pm}$, 50% \tilde{g} → bb $\tilde{\chi}$ _ 100% q̃ → tbγ̃ $\overline{}$ 50% $\tilde{\mathbf{g}}$ → tb $\tilde{\chi}^{\pm}$, 50% $\tilde{\mathbf{g}}$ → t ____ 100% α̃ → tīγ Expected 800 600 400 200 400 600 800 1000 1200 1400

CMS Preliminary, L = 19.3 fb⁻¹, \sqrt{s} = 8 TeV

Gluino pair production limits, with gluinos decaying to different mixtures of b/t quarks.

 $m_{\tilde{a}}$ (GeV)

Kinematic edge in OS dileptons

- Target: ewkino decay chains, such as $\tilde{\chi}^0_{\ 2} \rightarrow l\tilde{l} \rightarrow l^+ l^- \tilde{\chi}^0_{\ 1}$;
- The invariant mass of the dilepton pair would have a "triangular shape" with a sharp kinematic endpoint;
- We require two isolated leptons with $\rm p_{_T}>20$ GeV, at least 2 jets, and MET > 100 GeV;
- Two signal regions:

a) both leptons are central: $|\eta| < 1.4$;

b) at least one lepton in the forward region 1.6 < $|\eta|$ < 2.4;

• Two search strategies:

1) Kinematic fit in the region 20 < m_u^2 < 300 GeV using a triangular signal shape convoluted with a Gaussian:

$$\mathcal{P}_{S}(m_{\ell\ell}) = \frac{1}{\sqrt{2\pi\sigma_{\ell\ell}}} \int_{0}^{m_{\ell\ell}^{edge}} y \cdot \exp\left(-\frac{(m_{\ell\ell}-y)^2}{2\sigma_{\ell\ell}^2}\right) dy.$$

2) Cut and count analysis in the region $20 < m_{ll} < 70$ GeV.

CMS-SUS-12-019 – PAS will be available soon

Kinematic edge in OS dileptons

• Fit analysis:

CMS-SUS-12-019 – PAS will be available soon

Central region:

- The two regions (central and forward) are fitted simultaneously, the only parameter in common is the position of the edge;
- The quoted significance does not include the "Look Elsewhere Effect".

Kinematic edge in OS dileptons

• Cut and count analysis:

CMS-SUS-12-019 – PAS will be available soon

The signal is searched for in the region $20 < m_n < 70$ GeV.

	Central	Forward
Observed [SF]	860	163
Flav. Sym. [OF]	$722\pm27\pm29$	$155\pm13\pm10$
Drell–Yan	8.2 ± 2.6	1.7 ± 1.4
Total estimates	730 ± 40	157 ± 16
Observed – Estimated	130^{+48}_{-49}	6^{+20}_{-21}
Significance $[\sigma]$	2.6	0.3

- The two analysis strategies give compatible results (also considering alternative background estimation techniques);
- The small excess we observe in the central region is not statistically significant.

Diphoton search with Razor

- Target: a variety of SUSY scenarios involving the decay of heavy squarks or gluinos, with photons in the final state;
- We select two isolated photons with $p_{_{T}}$ > 30, 22 GeV, $|\eta|$ < 2.5;
- We require at least one jet with $p_{\tau} > 40$ GeV, $|\eta| < 2.5$, and $\Delta R > 0.5$ from each candidate photon;
- The Razor variables are defined as:

$$M_R \equiv \sqrt{(p_{j_1} + p_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2} \qquad M_T^R \equiv \sqrt{\frac{E_T^{miss}(p_T^{j_1} + p_T^{j_2}) - \vec{E}_T^{miss} \cdot (\vec{p}_T^{j_1} + \vec{p}_T^{j_2})}{2}}$$
$$R \equiv \frac{M_T^R}{M_R}$$

 For a generic event, physics objects are merged into two "megajets". The combination that minimizes the quadratic sum of the invariant masses of the megajets is chosen.

Diphoton search with Razor

- We define:
 - → a signal region, with $M_R^2 > 600$ GeV, $R^2 > 0.002$;
 - → a control region, with $M_R^2 > 600$ GeV, 0.001 < $R^2 < 0.002$;
- We fit for the background in the control region (signal contamination is negligibly small), using the function:

$$P(\mathbf{M}_{\mathbf{R}}) \propto e^{-k(\mathbf{M}_{\mathbf{R}} - \mathbf{M}_{\mathbf{R}}^{0})^{\frac{1}{n}}}$$

- From the results of this fit we predict the background in the signal region;
- No significant excess is observed.

CMS-SUS-14-008 – PAS will be available soon

Diphoton search with Razor

CMS-SUS-14-008 – PAS will be available soon

General Gauge Mediation (GGM) scenario

- Target: stop pair production in the region $m(\tilde{t}) m(\tilde{\chi}_1^0) \sim m(t)$;
- Higgs bosons or Z's can be produced in the stop decays:

- A signal is searched for in three channels:
 a) 1 lepton or 2 OS leptons, and at least 3 b-jets;
 b) 2 SS leptons and at least one b-jet;
 c) at least 3 leptons and at least one b-jet;
- Dominant backgrounds from $t\overline{t}$ and VV production, reduced with further requirements on number of jets, $m_{\tau}(l, MET)$,

CMS-SUS-13-024 – accepted by PLB

h/Z from stop decays

IPA 2014

A. Gaz - University of Colorado

h/Z from stop decays

A. Gaz - University of Colorado

h/Z/W from ewkino decays

• Target: ewkino pair production, with decays to h, Z, and W:

- Different channels are considered:
 - hh: bb bb, γγ bb, γγ WW/ZZ/ττ;
 - hZ: γγ jj, γγ ee/μμ/ττ, bb ee/μμ;
 - → hW: γγ jj, γγ lν;

IPA 2014

A. Gaz – University of Colorado

CMS-SUS-14-002

h/Z/W from ewkino decays

IPA 2014

A. Gaz – University of Colorado

h/Z/W from ewkino decays

IPA 2014

A. Gaz - University of Colorado

Summary

Probe *up to* the quoted mass limit

Conclusions

- We performed a vast program of SUSY searches, unfortunately we didn't catch any signal yet...
- This is just a glimpse of the SUSY searches performed at CMS, for more results and interpretations, please visit:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

- More results will come as we continue to squeeze some more physics out of the Run1 dataset...;
- ... and the focus is shifting towards the imminent start of Run2, scheduled for next Spring, when the collision energy will be raised to 13 TeV;
- The substantial increase in energy will open a large chunk of phase-space for the next round of searches;
- Stay tuned!

