

Search for $0\nu\beta\beta$ decay and prospects for dark matter detection with CUORE

T. O'Donnell University of California, Berkeley Lawrence Berkeley National Laboratory

Interplay between Particle and Astroparticle physics 22-August-2014

... on behalf of the CUORE Collaboration

Other opportunities with CUORE: WIMP DM

Neutrino Mass: Some open questions

 \mathbf{M} v-oscillations tell us the mass splittings \mathbf{M} solar matter effects tell us sign of dm²₂₁

- Absolute offset from Zero
- Sign of dm²23 (Hierarchy)

Double Beta Decay

What might we learn ?

- If observed: learn neutrinos are Majorana fermions, lepton number violation; maybe the hierarchy, constraints on absolute mass scale
- If not observed: stringent limits help make the most of future neutrino data, maybe show neutrinos are not Majorana

Double Beta Decay - Signature

$\beta\beta$ Decay of ¹³⁰Te

- Fairly high Q value: ~2528 keV
- High natural abundance: 34.2%
- State of the art from CUORICINO using TeO₂ bolometers:
 - Exposure (130Te): 19.75 kg.yr
 - Energy resolution: 6.3 +/- 2.5 keV FWHM
 - Background index: 0.169 +/- 0.006 c/keV/kg/yr
- Final limit from CUORICINO:

$$\begin{split} T_{1/2}^{0\nu} &> 2.8 \times 10^{24}\,{\rm yr} \quad (90\%~{\rm C.L}) \\ &\langle m_{\beta\beta}\rangle < 0.3 - 0.7\,{\rm eV} \end{split}$$

- Background mainly from:
 - ²³²Th γ from cryostat
 - degraded α's and β's from crystal and Cu surfaces
- The next step is CUORE

8

A word about bolometer technique

- Energy deposit in absorber results in temperature rise
- For TeO₂ crystals configured for CUORE at ~10mK, $\Delta T \sim 0.1$ mK per MeV
- Temperature change read out with Ge-NTD
- Energy response can be calibrated with sources

- M: Scale up mass of ¹³⁰Te (~20x)
 - 988, 5x5x5 cm³ natTeO₂ crystals
 - 741 kg of natTeO2
 - 206 kg of ¹³⁰Te
 - Efficient absorber
 - Assembled into 19 towers,
 13 floors per tower, 4 crystals per floor
- t: Cryogen free dilution refrigerator
 - Improves detector duty cycle
 - Improves stability
- δE: Resolution of TeO₂ bolometers is excellent, 5keV @2616keV is demonstrated
- **b**: Reduce background (~20x)

CUORE

CUORE will run in Hall A of Gran Sasso National Lab in Italy

CUORE: Path to lower background

• Improved shielding

CUORE: Path to lower background

Ultra-pure TeO2 crystal array

Bulk activity 90% C.L. upper limits: 8.4 · 10⁻⁷ Bq/kg (²³²Th), 6.7 · 10⁻⁷ Bq/kg (²³⁸U), 3.3 · 10⁻⁶ Bq/kg (²¹⁰Po) Surface activity 90% C.L. upper limits:

2 · 10⁻⁹ Bq/cm² (²³²Th), 1 · 10⁻⁸ Bq/cm² (²³⁸U), 1 · 10⁻⁶ Bq/cm² (²¹⁰Po)

- Crystal holder design optimized to reduce passive surfaces (Cu) facing the crystals
- Developed ultra-cleaning process for all Cu components:
 - Tumbling
 - Electropolishing
 - Chemical etching
 - Magnetron plasma etching

т1

т2

- Benchmarked in dedicated bolometer run at LNGS
 - Residual ²³²Th / ²³⁸U surface contamination of Cu: < 7 · 10⁻⁸ Bg/cm²
- All parts stored underground, under nitrogen after cleaning

CUORE: Tower Assembly Steps

Wire bonding

Sembly of all 19 towers is complete

CUORE: Cryogenic system commissioning

Cryostat assembled, passed 4K commissioning test

Dilution unit delivered to LNGS, able to maintain ~5mK in commissioning tests

Full integration of DU in cryostat ongoing
first integration run already reached 14mK base T

CUORE-0

- A single CUORE-like tower ~11 kg of ¹³⁰Te
- Assembly followed the new procedures and protocols for CUORE
- Currently deployed in the old CUORICINO cryostat in HallA of LNGS

CUORE-0 Background Measurement

	0vββ region	2700-3900 keV *	•
	[c/keV/kg/yr]	[c/keV/kg/yr]	
$\begin{array}{c} \textbf{CUORICINO}\\ \epsilon=83\% \end{array}$	0.153 +/- 0.006	0.110 +/- 0.001	•
CUORE-0 ε =78%	0.063 +/- 0.006	0.020 +/- 0.001	•

- ~2.5 fold reduction of bkg in ROI
 ØBetter radon control in COURE-0
 - β/γ bkg from cryostat ²³²Th remains the same
 - Consistent with the Cuoricino bkg model

* excluding the ¹⁹⁰ Pt peak region

CUORE-0 Energy Resolution

CUORE-0 Sensitivity

- CUORE-0 is the most sensitive ¹³⁰Te 0vββ expt **running**
- Expect to surpass CUORICINO with ~ 1yr lifetime

Projection to CUORE Bkg

- CUORE-0 provides benchmark of bkg remaining after the new assembly and Cu ultra-cleaning protocols
- Using measurements and limits from materials screening campaign we project bkg to CUORE using full geometry simulation

 Conservatively extrapolate measured α-region bkg from CUORE-0 assuming all bkg is from ²³⁸U/²³²Th/²¹⁰Po individually

CUORE Sensitivity

- Interpretation of $^{130}\text{Te}~0\nu\beta\beta$ half-life limit in terms of $m_{\beta\beta}$

 $m_{\beta\beta} < (50 - 130 \,\mathrm{meV})$

 CUORE will start to explore the invertedhierarchy (depending on the NME)

Assumptions:

- $\delta E = 5 \text{ keV FWHM at } 2615 \text{ keV}$
- $b = 0.01 \text{ counts/(keV \cdot kg \cdot yr)}$

$$T_{1/2}^{0\nu} > 9.5 \times 10^{25} yr (90\% C.L)$$

WIMP Dark Matter with CUORE ?

What would WIMP recoil modulation signal look like in CUORE (TeO₂)?

Max-min modulated rate vs recoil energy for $\sigma_{SI/nucleon} = 10^{-41} cm^2$

- Requires low threshold ~10keV (not typically interesting domain for $0\nu\beta\beta$ searches)
- Requires low background

Can threshold of CUORE-style modules be lowered ?

- Cuore Crystal Validation Run 2 (CCVR2)
- 4 CUORE crystals operated in test run for QA
- Improved analysis techniques achieved lower threshold:
- Achieved a threshold of ~3keV with 3 out of 4 crystals

Sensitivity to annual modulation in CUORE-0 and CUORE

Assumptions:

- Energy threshold: 3keV
- Background: sampled from CCVR2
- Halo model: Isothermal sphere, p_w=0.3GeV/cm³, v₀=220km/s, v_{esc} =600 km/s
- Q_{NR/e⁻R} =1

- CUORE-0 is now taking data, low-threshold analysis is ongoing
- For sure, CUORE is not as sensitive as dedicated DM experiments but may provide constraints in an interesting region of parameter space

Conclusion

- The CUORE program has made a lot of progress in the last decade
- Lessons learned from CUORICINO have guided the CUORE design
- Data from CUORE-0 verifies that the assembly line, materials selection, and ultra-cleaning protocols are effective in reducing the leading background
- CUORE detector array is now ready and cryogenic system commissioning is advancing
- Expect array to be deployed in cryostat in 2015
- Large mass and low-background array has potential for other rare event searches unrelated to $0\nu\beta\beta$

Extra Material

CUORE-0 Blinding Procedure

- Produce an artificial peak in the ROI A small blinded fraction of events within ±10keV of 2615keV peak are exchanged with events within ±10 keV of Q-value
- Plan to unblind when CUORE-0 sensitivity exceeds CUORICINO

Improvements for lowering threshold

500

500

sample index

600

sample index

600

Offline filter of continuously • sampled raw data with offline trigger

31

4.7 keV peak in CCVR2

- This peak was also confirmed in a reanalysis of CUORICINO data
- Was only possible for the last 2 months of data-taking
- Only 4 channels reached threshold below 4.7keV

- Origin of the peak is not understood
- 4.7 keV coincides with L₁ atomic shell of antimony (Sb)
- Data are not consistent with known decays to Sb
 - ^{121m}Te, ¹²¹Te EC to ¹²¹Sb (T_{1/2} =154 d and 17 d) but the intensity of the L1/K lines are inconsistent with our data
 - Other EC metastable Te isotopes have half-lives < 4.7 days. Peak rate is constant over 20 days.

