

Search for 0νββ decay and prospects for dark matter detection with CUORE

T. O'Donnell University of California, Berkeley Lawrence Berkeley National Laboratory

Interplay between Particle and Astroparticle physics 22-August-2014

... on behalf of the CUORE Collaboration

Other opportunities with CUORE: WIMP DM

three-flavor and the Kampus of the Kampus of the Kanada in Chapter 7 provides in Chapter 7 provides in Chapter **Neutrino Mass: Some open questions**

26

parameter is currently under investigation at next generation short-baseline reactor experiments and at accelerator neutrino experiments searching for electron-neutrino

appearance in νµ-beams [37, 38].

ν-oscillations tell us the mass splittings \overline{M} solar matter effects tell us sign of dm²₂₁

- **• Absolute offset from Zero**
- **Sign of dm²23 (Hierarchy)**

dependence as well as well as well as the fundamental physics constants, nuclear structure (the nuclear matrix elements, n α atomic physics (the so called phase-space factors G (i.e. of the decay Q-value). Hence, transitions with larger \mathbb{R}

Wednesday, September 12, 2012 3

 22 ± 27 and 22 ± 27

*G*0⌅(*Q, Z*), is calculable. Calculation of the nuclear matrix element, *M*0⌅, is a

component, whose amplitude is of order mile, where α is of order mile, where E is the vertex α

What might we learn ?

and upper bound on sin 2 which is consistent with existing limits. This unknown \mathbb{R}^n parameter is currently under investigation at next generation short-baseline reactor

- If observed: learn neutrinos are Majorana fermions, lepton number violation; maybe the hierarchy, constraints on absolute mass scale of *N H* (*m*² *>* 0) and *IH* (*m*² *<* 0). The shaded areas correspond to the 3
- If not observed: stringent limits help make the most of future neutrino data, maybe show neutrinos are not Majorana

Double Beta Decay - Signature

contributions of all the viri, we conclude that the virising that the amplitude for 0

of interest. Two-neutrino double beta decay as back-beta decay as back-beta decay as back-beta decay as back-

known *V A* interactions in addition to a massive Majorana neutrino. One can

ββ Decay of 130Te R R R D δE → 4% at Q-value at
D-value at Q-value at

8

- Fairly high Q value: ~2528 keV
- High natural abundance: 34.2%
- State of the art from CUORICINO using TeO2 bolometers: α the art from CUORICINO using α and α is α is α
	- Exposure (130) : 19.75 kg.yr
	- Energy resolution: 6.3 +/- 2.5 keV FWHM
	- Background index: 0.169 +/- 0.006 c/keV/kg/yr
- Final limit from CUORICINO:

 $T^{0\nu}_{1/2} > 2.8 \times 10^{24} \,\rm yr$ (90% C.L) $\overline{}$ from 0vββ Q-value $\overline{}$ $\langle m_{\beta\beta} \rangle < 0.3 - 0.7$ eV

- Background mainly from:
	- ²³²Th γ from cryostat
	- degraded α's and β's from crystal and Cu surfaces
- The next step is CUORE

A word about bolometer technique

- Energy deposit in absorber results in temperature rise
- For TeO₂ crystals configured for CUORE at \sim 10mK, $\Delta T \sim 0.1$ mK per MeV
- Temperature change read out with Ge-NTD
- Energy response can be calibrated with sources

CUORICINO **CUORE**

- M: Scale up mass of ¹³⁰Te (~20x)
	- 988, 5x5x5 $cm³$ natTeO₂ crystals
		- 741 kg of $natTeO₂$
		- 206 kg of 130Te
		- Efficient absorber
	- Assembled into 19 towers, 13 floors per tower, 4 crystals per floor
- **t**: Cryogen free dilution refrigerator
	- Improves detector duty cycle
	- Improves stability
- δ**E**: Resolution of TeO₂ bolometers is excellent, 5keV @2616keV is demonstrated
- **b**: Reduce background (~20x)

• CUORE will run in Hall A of Gran Sasso National Lab in Italy

CUORE: Path to lower background

• Improved shielding

CUORE: Path to lower background

Ultra-pure TeO2 crystal array

Bulk activity 90% C.L. upper limits: 8.4·10-7 Bq/kg (232Th), 6.7·10-7 Bq/kg (238U), 3.3·10-6 Bq/kg (210Po) **Surface activity** 90% C.L. upper limits:

2·10-9 Bq/cm2 (232Th), 1·10-8 Bq/cm2 (238U), 1·10-6 Bq/cm2 (210Po)

- Crystal holder design optimized to reduce passive surfaces (Cu) facing the crystals
- Developed ultra-cleaning process for all Cu components:
	- Tumbling
	- **Electropolishing**
	- Chemical etching
	- Magnetron plasma etching

T1

T3

- Residual 232 Th / 238 U surface contamination of Cu: $< 7 \cdot 10^{-8}$ Bq/cm²

All parts stored underground, under nitrogen after cleaning

CUORE: Tower Assembly Steps **CUODE: Tower Accombly Ctope**

21.7

<u>Nire bond</u> Wire bonding

Wire bond thermistors and heaters to be a state of the state of th

DATE :

DATE :

SURFACE TREATMENT

 $T_{\rm eff}$ as $T_{\rm eff}$ as $T_{\rm eff}$ as $T_{\rm eff}$ for $L_{\rm eff}$ for $L_{\rm eff}$ and $R_{\rm eff}$

Geometrical tolerance ISO 8015-E

DATE

24/11/2010

24/11/2010

NAME :

D.Orlandi

Assembly of all 19 towers is complete

CUORE: Cryogenic system commissioning

M Cryostat assembled, passed 4K commissioning test

■ Dilution unit delivered to LNGS, able to maintain ~5mK in commissioning tests

Full integration of DU in cryostat ongoing **M** first integration run already reached 14mK base T

CUORE-0

- A single CUORE-like tower \sim 11 kg of ¹³⁰Te
- Assembly followed the new procedures and protocols for CUORE
- Currently deployed in the old CUORICINO cryostat in HallA of LNGS

CUORE-0 Background Measurement

- ~6-fold reduction a-dominated bkg **M**Ultra-cleaning of CUORE-0 Cu surfaces
- \sim 2.5 fold reduction of bkg in ROI Better radon control in COURE-0
	- β /γ bkg from cryostat ²³²Th remains the same
	- **• Consistent with the Cuoricino bkg model**

* excluding the 190 Pt peak region

CUORE-0 Energy Resolution

CUORE-0 Sensitivity

- CUORE-0 is the most sensitive 130Te 0νββ expt **running**
- Expect to surpass CUORICINO with \sim 1yr lifetime

Projection to CUORE Bkg

- CUORE-0 provides benchmark of bkg remaining after the new assembly and Cu ultra-cleaning protocols
- Using measurements and limits from materials screening campaign we project bkg to CUORE using full geometry simulation

• Conservatively extrapolate measured α-region bkg from CUORE-0 assuming all bkg is from 238U/232Th/210Po individually

CUORE Sensitivity

Interpretation of 130 Te 0νββ half-life limit in terms of $m_{\beta\beta}$

 $m_{\beta\beta} < (50 - 130 \,\text{meV})$

• CUORE will start to explore the invertedhierarchy (depending on the NME)

Assumptions:

- \cdot $\delta E = 5$ keV FWHM at 2615 keV
- $b = 0.01$ counts/(keV \cdot kg \cdot yr)

$$
T_{1/2}^{0\nu} > 9.5 \times 10^{25} yr (90\% \text{C.L})
$$

WIMP Dark Matter with CUORE ?

What would WIMP recoil modulation signal look like in CUORE (TeO2) ?

Max-min modulated rate vs recoil energy for $\sigma_{\text{SI/nucleon}} = 10^{-41} \text{cm}^2$

- Requires low threshold \sim 10keV (not typically interesting domain for 0νββ searches)
- Requires low background

Can threshold of CUORE-style modules be lowered ?

- Cuore Crystal Validation Run 2 (CCVR2)
- 4 CUORE crystals operated in test run for QA
- Improved analysis techniques achieved lower threshold:
- Achieved a threshold of ~3keV with 3 out of 4 crystals

Sensitivity to annual modulation in CUORE-0 and CUORE

Assumptions:

- Energy threshold: 3keV
- Background: sampled from CCVR2
- Halo model: Isothermal sphere, p_w=0.3GeV/cm³, v₀=220km/s, v_{esc} =600 km/s
- $Q_{\text{NR/e}^-R}$ =1

- CUORE-0 is now taking data, low-threshold analysis is ongoing
- For sure, CUORE is not as sensitive as dedicated DM experiments but may provide constraints in an interesting region of parameter space

Conclusion

- The CUORE program has made a lot of progress in the last decade
- Lessons learned from CUORICINO have guided the CUORE design
- Data from CUORE-0 verifies that the assembly line, materials selection, and ultra-cleaning protocols are effective in reducing the leading background
- CUORE detector array is now ready and cryogenic system commissioning is advancing
- Expect array to be deployed in cryostat in 2015
- Large mass and low-background array has potential for other rare event searches unrelated to 0νββ

Extra Material

CUORE-0 Blinding Procedure

- Produce an artificial peak in the ROI A small blinded fraction of events within ±10keV of 2615keV peak are exchanged with events within \pm 10 keV of Q-value
- Plan to unblind when CUORE-0 sensitivity exceeds CUORICINO

Improvements for lowering threshold

sample index

sample index

• Offline filter of continuously sampled raw data with offline trigger

31

4.7 keV peak in CCVR2

Events / 0.2 keV

- This peak was also confirmed in a reanalysis of CUORICINO data
- Was only possible for the last 2 months of data-taking
- Only 4 channels reached threshold below 4.7keV

- Origin of the peak is not understood Energy [keV]
- 4.7 keV coincides with L1 atomic shell of Figure 6. Best fits at the 4.7 keV line on the three bolometers with low threshold. On the bottom antimony (Sb) $r(\mathsf{Ch})$
	- Data are not consistent with known decays to Sb \mathbf{B} $\mathbf{$
		- 121mTe, 121Te EC to $121Sb$ (T_{1/2} = 154 d and 17 d) but the intensity of the L1/K lines are inconsistent with our data $\frac{104}{\pi}$ $\frac{104}{\pi}$ $\frac{104}{\pi}$ $\frac{104}{\pi}$ $\frac{104}{\pi}$ $\frac{104}{\pi}$ $B = 2000 - 30011/2 - 134$
d and 17 d) but the intensity of the and in a but the interisity of the distribution of the distribution of the distribution of the U.S. ETA TITES ALE INCONSISIENT W
B45 $\frac{3}{4}$ $\frac{3}{4}$
- Other EC metastable Te isotopes Table 2. Best fit results for the 4.7 keV line and estimated peaking background from ¹²¹Te. The have half-lives < 4.7 days. Peak rate is constant over 20 days. \Box

