Exotics Searches at ATLAS

Workshop on the Interplay between Particle and Astroparticle Physics (IPA)

August 2014

Ruth Pöttgen on behalf of the ATLAS Collaboration

SP 101

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Bundesministerium für Bildung und Forschung

BMBF-Forschungsschwerpunkt ATLAS Experiment

Physics on the TeV-scale at the Large Hadron Collider

Motivation

Standard Model of particle physics (SM) **confirmed** with great precision in many experiments

even more complete with **Higgs**-discovery

one possible extension of SM providing solutions to some of the above: SUSY not this talk, see talk by L.Ancu on Thursday

many other suggestions for 'physics beyond the SM' (BSM): ''**exotics**''

19.8.2014

Exotics in ATLAS and in this talk

published results with 2012 data: **14 papers, 17 CONF notes**

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

large variety of final states/observables/models

typical strategy:

- consider some discriminant variable
- search for **excess** above data-driven or MC based background
- if no excess observed: set limits

in this talk: only **subset** of recent results

special focus on mono-X **dark matter** (DM) searches

- will also flash some of the other results
 - 🕴 general search
 - new heavy/excited quarks
 - new gauge bosons
 - contact interaction (CI)
 - large extra dimensions/black holes

ATLAS and LHC

- LHC has exceeded expectations
 - $\sim 5/\text{fb}$ at $\sqrt{\text{s}} = 7\text{TeV}$, $\sim 20/\text{fb}$ at $\sqrt{\text{s}} = 8\text{TeV}$
 - peak instantaneous luminosities of 8x10³³cm⁻²s⁻¹
- currently shutdown to prepare for run-II ∮ 13-14TeV, 10³⁴cm⁻²s⁻¹
- ATLAS one of 4 large experiments at the LHC general purpose detector, broad physics programme

19.8.2014

44m

General Search

IPA, London

ATLAS-CONF-2014-006

20.3/fb

no particular model, looking for deviations from SM prediction in many distributions

~700 event classes, categorised based on final states
 can involve electrons, photons, muons, (b-)jets, E^{miss}

discriminants: m_{eff}, m_{inv}, E_T^{miss}

f m_{eff}: scalar p_T sum of all objects including E_T^{miss}

minv: invariant mass of all objects excluding E^{miss}

algorithm searching for regions with largest deviations

no significant deviation observed

Ruth Pöttgen

not as sensitive as optimised specific searches

🛉 but: comprehensive investigation

classes for which electron or photon triggers are used

19.8.2014

New Heavy Quarks

ATLAS-CONF-2014-036

20.3/fb

vector-like quarks part of various non-SUSY natural models

Fregulation of quadratic divergence of one-loop contributions to Higgs mass

here: $TT \rightarrow Zt + X$, $BB \rightarrow Zb + X$ (also single production considered in conf note)

select high p_T (>150GeV) Z boson (from ee or μμ) + (b-)jets
two categories: exactly 2 or ≥3 leptons

discriminants: m(Zb) or $H_T(jet+leptons)$ (scalar p_T sum)

here: Q=T or Q=B

arxiv:1407.7494 accepted by JHEP

20.3/fb new gauge bosons predicted by many BSM scenarios 10⁸ Events ATLAS $W' \rightarrow \mu \nu$ Data 2012 10^{-7} models for GUTs/solutions to hierarchy problem W'(0.5 TeV) \s = 8 TeV W'(1 TeV) 10⁶ $\int L dt = 20.3 \text{ fb}^{-1}$ W'(3 TeV) 10⁵ w Ζ select exactly one electron or muon 10⁴ Top quark 10³ Diboson p_e>125GeV, p_#>45GeV Multijet 10^{2} same cuts on ET^{miss} 10 10 Data/Bkg multi-jet background estimated from data 0.5 10^{2} 10^{3} m_T [GeV] discriminant: $m_T = \sqrt{2p_T E_T^{miss} (1 - \cos \varphi_{v\ell})}$ σ B [fb] **ATLAS** ---- NNLO theory 10³ **Observed limit Expected** limit 95%CL limits **Expected** \pm 1 σ 10^{2} $m_{W'}$ [TeV] $\textbf{Expected} \pm \textbf{2} \sigma$ Obs. Exp. Decay 95% CL 10 3.13 3.13 $e\nu$ 2.97 2.97 $\mu\nu$ 3.24 Both 3.17 $W' \rightarrow I \nu$ $\sqrt{s} = 8 \text{ TeV}, \int \text{Ldt} = 20.3 \text{ fb}^{-1}$ 10^{-1} 500 1500 2000 2500 3000 3500 4000 1000 m_w, [GeV] IG Ruth Pöttgen 19.8.2014 IPA, London

:ERN

arxiv:1405.4123 accepted by PRD

New Gauge Bosons - Dilepton

IPA, London

20.3/fb

dilepton resonances predicted by many BSM scenarios e.g. GUTs/solutions to hierarchy problem (many considered in this paper)

2 central electrons, p_T>40 (30) GeV

or 2 opposite-sign muons, p_T >25 GeV

discriminant: dilepton invariant mass I 28 GeV < m_{II} < 4500GeV

dijet and W+jets final states estimated from data
simulation normalised to data in Z-peak

Model	Width	Observed Limit	Expected Limit
	[%]	[TeV]	[TeV]
$Z'_{\rm SSM}$	3.0	2.90	2.87
Z'_{χ}	1.2	2.62	2.60
Z'_{ψ}	0.5	2.51	2.46
Z^{*}	3.4	2.85	2.82

Contact Interaction (CI)

arXiv:1407.2410 submitted to EPJC

20.5/fb

 $400 \text{ GeV} < m_{ee} < 4500 \text{ GeV}$

ATLAS

search for non-resonant new phenomena in ee and $\mu\mu$

- p_T^{e1}>40GeV, p_T^{e2}>30GeV
- ∮ p⊤^{µ1,2}>25GeV
- opposite sign m1>80GeV

accommodate fermion compositeness by 4-fermion CI (similar to Fermi theory of β -decay)

discriminant: **dilepton mass** and dilepton **decay angle** limits on CI scale Λ (binding energy) for different chiral structures constructive or destructive interference with DY (η_{ij} , i,j=L,R)

Events

200⊢

Data 2012

Photon-Induced

Ζ/γ*

Events 10⁷ ATLAS • Data 2012 **Ζ**/γ* $\mu\mu$: L dt = 20.5 fb⁻¹ Photon-Induced 10⁵ s = 8 TeV Top guarks 10⁴ Diboson $-\Lambda_{LL}^{-} = 14 \text{ TeV}$ 10^{3} --- A⁺₁₁ = 14 TeV 10^{2} M_s = 4.0 TeV (GRW) 10 10 ອ 1.4 ອັສ 1.2 Data / B 0.1 $m_{\mu\mu}^{3}$ [TeV] 0.2 0.3 0.4 2

Extra Dimensions

arXiv:1405.4254 accepted by JHEP

20.3/fb

- possible solution to hierarchy problem
- often used benchmark model: ADD (Arkani-Hamed, Dimopoulos, Dvali)
- propagation of gravitons in **n spacial extra dimensions** of **size R**
- $M_{Pl}^2 = M_D^{n+2} R^n => M_D$ could be in TeV range => **black hole** production at LHC energies

leptons+jets search

- \geq 3 objects with p_T>100GeV
- ≥ 1 lepton (e, μ)
- \int production mass threshold M_{th} > M_{D}
- ∮ discriminant: scalar p⊤ sum

8,2014 Dbserved (n==2)

Expected (n=2)

Obconvod (n-1)

ATLAS

IPA, London

Rotating Black Holes, low mult. remnant, CHARYBDIS

20.3/fb

QCD: **smoothly falling** dijet mass spectrum

Dijets

many BSM models predict narrow resonances

=> search for **bumps** on top of smooth background

excited quarks

new trigger strategy

=> reach extended to <1TeV wrt 2011 results ≥2 jets with p_T>50GeV
 2 leading jets in |η|<2.8
 m_{jj}>250GeV
 |y*|=1/2|y₁-y₂|<0.6

<u>2 example interpretations:</u>

quantum black holes (QBH) in ADD LED

11

Mono-X Searches for Dark Matter

DM itself invisible to detector need something to '**tag**'/trigger on

unbalanced reconstructed object => missing transverse energy (E_T^{miss})

What is the

assume: interaction mediated by a new particle too heavy to be directly produced @LHC

?

effective field theory approach (contact interaction)

suppression scale of effective theory: M*

Ruth Pöttgen

 $M_* \sim \frac{M}{\sqrt{g_{\gamma}g_{SM}}}$ M: mediator mass g_{χ} : coupling to DM g_{SM}: coupling to SM

for Dirac-fermionic DM

Mono-jet

ATLAS-CONF-2012-147

highest sensitivity to many of the operators due to large cross section

solely sensitive to gg-operator

| ≤n_{jet}≤2 |epton veto |ead. jet p_T>|20GeV, |**η**|<2.0 |4 signal regions (SR1-SR4) |ead jet p_T & E_T^{miss} > [120, 220, 350, 500]GeV

no significant deviation from SM

10.5/fb

13

Mono-jet 7TeV

Iimits on M* can be translated into (upper) limits on WIMP-Nucleon scattering cross section

ERN

IG

Mono-Photon

PRL 110, 011802 (2013)

4.6/fb, 7TeV

| photon |η|<2.37, p_T>150GeV

E_T^{miss} >150GeV

lepton veto, ≤ l jet

update with full 2012 dataset in preparation

Background source	Prediction	\pm (stat.)	\pm (syst.)
$Z(\rightarrow \nu \bar{\nu}) + \gamma$	93	± 16	± 8
$Z/\gamma^* (\to \ell^+ \ell^-) + \gamma$	0.4	± 0.2	± 0.1
$W(ightarrow \ell u) + \gamma$	24	± 5	± 2
W/Z + jets	18	_	± 6
Top	0.07	± 0.07	± 0.01
$WW, WZ, ZZ, \gamma\gamma$	0.3	± 0.1	± 0.1
γ +jets and multi-jet	1.0	_	± 0.5
Total background	137	± 18	± 9
Events in data (4.6 fb^{-1})	116		

no significant deviation from Standard Model prediction

Mono-W/Z (hadronic) PRL 112, C

PRL 112, 041802 (2014)

I fat jet (Cambridge-Aachen), R=1.2
 jet p_T > 150GeV, E_T^{miss} >350, 500 GeV
 Iepton/γ veto, ≤1 AntiKt jet (R=0.4)

constructive interference for W emission if g_u=-g_d

=> mono-W dominant process

=> limits surpass mono-jet by 3 orders of magnitude (for D5)

no significant deviation from Standard Model prediction

CERN

IGI

Mono-Z(ll)

PRD 90,012004 (2014)

17

arxiv: 1407.7494 accepted by JHEP

20.3/fb

- 🕴 discriminant: E_T^{miss}
- reminder: construtive or destructive interference for D5

Mono- $W(\ell v)$

Beyond the EFT

coupling to SM particles

🛉 merit of EFT:

- only 2 parameters, independent of details of UV completion, directly comparable to (in)direct searches
- however: validity of EFT questionable at LHC energies
- minimal requirement: momentum transfer $Q_{tr} < M_{med} = f(g_{SM}, g_{DM}, M_*)$,

remove events that do not fulfill the above requirement

- => limits deteriorate
- how much, depends on assumed coupling/operator
- fe.g. D5 fully valid wrt this requirement for
 - $\pi < \sqrt{(g_{SM} g_{DM})} < 4\pi$ <u>ATL-PHYS-PUB-2014-007</u>
- details depend on UV completion
 - increases number of parameters
 - natural next step: simplified model with a light mediator
 - parameters: WIMP mass, mediator mass and width

coupling to WIMPs

+ couplings bounded from above

Simplified Models

14 TeV Prospects

IPA, London

simulation studies for I4TeV performed for some analyses, here two examples

Mono-jet <u>ATL-PHYS-PUB-2014-007</u>

∮ improvement by factor ~2

di-lepton <u>ATL-PHYS-PUB-2013-003</u>

current limits ~3TeV

model	$300 {\rm fb}^{-1}$	$1000 {\rm fb}^{-1}$	3000fb^{-1}
$Z'_{SSM} \rightarrow ee$	6.5	7.2	7.8
$Z'_{SSM} \to \mu\mu$	6.4	7.1	7.6

Astroparticle Forum

founded April 2012

forum for discussion of astroparticle physics related issues

exchange between ATLAS and astroparticle physics experiments and theorists

- invites speakers from other experiments/theorists
- input welcome and appreciated

provide guidance to ATLAS groups for astrophysics related interpretation/analyses

ATLAS impact for astrophysics and vice versa

example topics:

dark matter, EFT validity - covered in this talk

constraints on hadronic interaction models for comparisons to air shower data

contact:

david.berge@cern.ch

<u>heidi.sandaker@cern.ch</u>

stephane.willocq@cern.ch tobias.golling@yale.edu <u>onofrio@cern.ch</u> jamie.boyd@cern.ch

Summary

- large variety of exotics BSM searches conducted in ATLAS
- no excess over SM expectations observed
- limits on large number of model parameter
- Dark Matter searches performed in many channels
- mostly use of EFT for easy comparison to (in)direct experiments

in the future: move on to **simplified models**

	Model	<i>ℓ</i> ,γ	Jets	E ^{miss} T	∫£ dt[fb	Mass limit	j≈ at (e _0.0) is	Reference
	ADD $G_{KK} + g/g$	-	1-2 j	Yes	4.7	4.37 TeV	n=2	1210.4491
	ADD non-resonant <i>ll</i>	2e, µ	- '	-	20.3	5.2 TeV	n = 3 HLZ	ATLAS-CONF-2014-030
	ADD QBH $\rightarrow \ell q$	1 e, µ	1 j	-	20.3	5.2 TeV	<i>n</i> = 6	1311.2006
ะ	ADD QBH	-	2 j	-	20.3	۸ _{th} 5.82 TeV	<i>n</i> = 6	to be submitted to PRI
20	ADD BH high N _{trk}	2 µ (SS)	-	-	20.3	A _{th} 5.7 TeV	n = 6, M _D = 1.5 TeV, non-rot BH	1308.4075
Ë	ADD BH high $\sum p_T$	$\geq 1 e, \mu$	≥ 2 j	-	20.3	A _{th} 6.2 TeV	n = 6, M _D = 1.5 TeV, non-rot BH	1405.4254
<u>E</u>	RS1 $G_{KK} \rightarrow \ell \ell$	2 e, µ	-	-	20.3	KK mass 2.68 TeV	$k/\overline{M}_{PI} = 0.1$	1405.4123
8	RS1 $G_{KK} \rightarrow WW \rightarrow \ell \nu \ell \nu$	2 e, µ	-	Yes	4.7	KK mass 1.23 TeV	$k/\overline{M}_{PI} = 0.1$	1208.2880
Ĕ	Bulk RS $G_{KK} \rightarrow ZZ \rightarrow \ell \ell q q$	2 e, µ	2 j / 1 J	-	20.3	KK mass 730 GeV	$k/\overline{M}_{PI} = 1.0$	ATLAS-CONF-2014-03
ш	Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$	-	4 b	-	19.5	5KK mass 590-710 GeV	$k/\overline{M}_{PI} = 1.0$	ATLAS-CONF-2014-00
	Bulk RS $g_{KK} \rightarrow t\overline{t}$	1 e, µ	≥ 1 b, ≥ 1 J/2	j Yes	14.3	KK mass 2.0 TeV	BR = 0.925	ATLAS-CONF-2013-05
	$S^1/Z_2 ED$	2 e, µ	-	-	5.0	$M_{\rm KK} \approx {\rm R}^{-1}$ 4.71 TeV		1209.2535
	UED	2γ	-	Yes	4.8	Compact. scale R ⁻¹ 1.41 TeV		ATLAS-CONF-2012-07
S	SSM $Z' \rightarrow \ell \ell$	2 e, µ	-	-	20.3	" mass 2.9 TeV		1405.4123
Š	SSM $Z' \rightarrow \tau \tau$	2 τ	-	-	19.5	" mass 1.9 TeV		ATLAS-CONF-2013-06
ğ	SSM $W' \rightarrow \ell \nu$	1 e, µ	-	Yes	20.3	V' mass 3.28 TeV		ATLAS-CONF-2014-01
e	EGM $W' \to WZ \to \ell \nu \ell' \ell'$	3 e, µ	-	Yes	20.3	V' mass 1.52 TeV		1406.4456
ž	EGM $W' \rightarrow WZ \rightarrow qq\ell\ell$	2 e, µ	2j/1J	-	20.3	V' mass 1.59 TeV		ATLAS-CONF-2014-03
Ö	LRSM $W'_R \rightarrow tb$	1 e, µ	2 D, U-1 J	Yes	14.3	V' mass 1.84 TeV		ATLAS-CONF-2013-050
	LHSM $W'_R \rightarrow tb$	0 e, µ	≥10,1J	-	20.3	V' mass 1.77 lev		to be submitted to EPJC
5	Cl qqqq	-	2 j	-	4.8	7.6 TeV	$\eta = +1$	1210.1718
0	Cl uutt	2 e, μ (SS)	≥ 1 b, ≥ 1 j	Yes	14.3	3.3 TeV	C = 1	ATLAS-CONF-2014-030 ATLAS-CONF-2013-051
Ž	EFT D5 operator (Dirac)	0 e, µ	1-2 j	Yes	10.5	۸. 731 GeV	at 90% CL for m(x) < 80 GeV	ATLAS-CONF-2012-147
u	EFT D9 operator (Dirac)	0 e, µ	1 J, ≤ 1 j	Yes	20.3	A. 2.4 TeV	at 90% CL for m(x) < 100 GeV	1309.4017
~	Scalar LQ 1 st gen	2 e	$\geq 2 j$	-	1.0	Q mass 660 GeV	$\beta = 1$	1112.4828
2	Scalar LQ 2 nd gen	2 μ	≥ 2 j	-	1.0	Q mass 685 GeV	$\beta = 1$	1203.3172
	Scalar LQ 3 rd gen	1 e, μ, 1 τ	1 b, 1 j	-	4.7	Q mass 534 GeV	$\beta = 1$	1303.0526
	Vector-like quark $TT \rightarrow Ht + X$	1 e, µ	$\geq 2 \text{ b}, \geq 4 \text{ j}$	Yes	14.3	mass 790 GeV	T in (T,B) doublet	ATLAS-CONF-2013-018
ŝ	Vector-like quark $TT \rightarrow Wb + X$	1 e, µ	≥ 1 b, ≥ 3 j	Yes	14.3	mass 670 GeV	isospin singlet	ATLAS-CONF-2013-06
la la	Vector-like quark $TT \rightarrow Zt + X$	2/≥3 e,µ	≥ <u>2</u> /≥1 b	-	20.3	mass 735 GeV	T in (T,B) doublet	ATLAS-CONF-2014-03
- 6-	Vector-like quark $BB \rightarrow Zb + X$	2/≥3 e,µ	≥2/≥1 b	-	20.3	B mass 755 GeV	B in (B,Y) doublet	ATLAS-CONF-2014-03
	Vector-like quark $BB \rightarrow Wt + X$	2 e, μ (SS)	≥ 1 b, ≥ 1 j	Yes	14.3	t mass 720 GeV	B in (T,B) doublet	ATLAS-CONF-2013-05
ns	Excited quark $q^* \rightarrow q\gamma$	1γ	1 j	-	20.3	mass 3.5 TeV	only u^* and d^* , $\Lambda = m(q^*)$	1309.3230
불	Excited quark $q^* \rightarrow qg$	-	21	-	20.3	* mass 4.09 TeV	only u^* and d^* , $\Lambda = m(q^*)$	to be submitted to PRE
< こ	Excited quark $b^* \rightarrow Wt$	1 or 2 e, µ	1 b, 2 j or 1 j	Yes	4.7	* mass 870 GeV	left-handed coupling	1301.1583
J @	Excited lepton $\ell^* \rightarrow \ell \gamma$	2 e, μ, 1 γ			13.0	* mass 2.2 TeV	$\Lambda = 2.2$ leV	1308.1364
1.6	$I STC a_T \rightarrow W\gamma$	$1 e, \mu, 1 \gamma$	-	Yes	20.3	T mass 960 GeV		to be submitted to PLB
1 đ	100111	73 -	21	-	2.1	¹⁰ mass 1.5 TeV	$m(W_R) = 2$ TeV, no mixing	1203.5420
1.6	LRSM Majorana ν	2 e, µ	-)					
ner fe	LRSM Majorana <i>v</i> Type III Seesaw	2 e, μ 2 e, μ	-	-	5.8	t [±] mass 245 GeV	$ V_e =0.055, V_{\mu} =0.063, V_{\tau} =0$	AILAS-CONF-2013-01
Other fe	LRSM Majorana v Type III Seesaw Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$	2 e, μ 2 e, μ 2 e, μ (SS)	-	-	5.8 4.7	I [#] mass 245 GeV I ^{±±} mass 409 GeV	$ V_e =0.055, V_{\mu} =0.063, V_{\tau} =0$ DY production, BR($H^{\pm\pm} \rightarrow \ell \ell$)=1	AILAS-CONF-2013-01 1210.5070
Other fe	LRSM Majorana v Type III Seesaw Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Multi-charged particles	2 e, μ 2 e, μ 2 e, μ (SS) –		- - -	5.8 4.7 4.4	I [±] mass 245 GeV I ^{±±} mass 409 GeV ulti-charged particle mass 490 GeV	$ V_e =0.053, V_{\mu} =0.063, V_{\tau} =0$ DY production, BR($H^{\pm\pm} \rightarrow \ell \ell$)=1 DY production, $ q = 4e$	ATLAS-CONF-2013-01 1210.5070 1301.5272

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

- LHC **run-II** will start in 2015
 - higher energies, higher luminosity
 - expect many more interesting results
 - stay tuned! :)

Additional Material

IPA, London

19.8.2014

General Search

ATLAS-CONF-2014-006

f not sensitive at low p_T or small cross sections

∮ p⊤ cuts

Object	jet	<i>b</i> -jet	electron	muon	photon	$E_{\mathrm{T}}^{\mathrm{miss}}$
Label	j	b	e	μ	γ	ν
Lower $p_{\rm T}$ cut	50 GeV	50 GeV	25 GeV	25 GeV	40 GeV	150 GeV

background systematics

Process	correlated	uncorrelated
	uncertainty (%)	uncertainty (%)
Multijet (normalized to data)	0	30
γ +jets and $\gamma\gamma$ +jets	10	30
W/Z + jets production	5	15
W/Z + heavy flavour production	10	30
$t\bar{t}$ and single top	5	20
$t\bar{t}$ + vector boson	10	30
Diboson processes (including W/Z+ γ)	10	30
Triboson	20	50
Higgs production	5	20

New Heavy Quarks

|--|

Event selection							
	Z boson candidate preselection						
	\geq 2 centr	al jets					
	$p_{\mathrm{T}}(Z) \ge 1$	50 GeV					
Dilepton	channel	Trilepton channel					
$= 2 \log$	ptons	\geq 3 leptons					
$\geq 2 b$ -tag	ged jets	\geq 1 <i>b</i> -tagged jet					
Pair production	Single production	Pair production	Single production				
$H_{\rm T}({\rm jets}) \ge 600 {\rm GeV}$	\geq 1 fwd. jet	-	\geq 1 fwd. jet				
	Final discriminant						
<i>m</i> (Z	<i>Lb</i>)	$H_{\rm T}({\rm jets})$	+leptons)				

5	0.8 A	TLAS	Simulation	- 	ackgrounds	-
	0.7 Pr	eliminary	Vs=8 TeV Trilepton	— ві — т	Ē (650 GeV) Ē (650 GeV)	
	0.6	8777772			bq (650 GeV)	
5	0.5					
	0.4					
•	0.3					
	0.2			Ц		
				777-1-1		
	0	400	800 L	1200 (ioto Llor	1600 atons) [G	2000
			—	1615+161	01011511176	

Fractiona	l uncertai	nties	(%): dilepton	channel		
	Z+jets	tī	Other bkg.	Total bkg.	₿Ē	$T\bar{T}$
Luminosity	1.4	2.8	2.8	0.3	2.8	2.8
Cross section	5.5	6.4	29	0.7	-	-
Jet reconstruction	13	10	14	11	2.0	2.1
<i>b</i> -tagging	9.1	13	9.9	5.7	7.2	5.9
e reconstruction	2.9	16	5.9	4.6	2.5	1.5
μ reconstruction	3.8	7.8	7.2	4.2	3.2	1.3
Z+jets $p_{\rm T}(Z)$ correction	9.0	-	-	6.5	-	-
Z+jets rate correction	6.9	-	-	5.0	-	-
MC statistics	5.0	25	12	5.4	2.4	2.9

Fractional uncertainties (%): trilepton channel								
$WZ t\bar{t} + V$ Other bkg. Total bkg.								
Luminosity	2.8	2.8	2.8	2.8	2.8	2.8		
Cross section	17	30	8.9	21	-	-		
Jet reconstruction	5.4	1.2	8.1	3.1	4.0	1.8		
<i>b</i> -tagging	13	3.6	13	6.7	5.6	5.5		
e reconstruction	9.3	3.9	37	11	5.9	12		
μ reconstruction	14	3.9	18	4.2	6.2	5.7		
MC statistics	11	3.1	27	6.6	4.8	8.3		

New Heavy Quarks

ATLAS-CONF-2014-036

u

B

 \overline{b}

electroweak single production

27

arxiv:1405.4123 submitted to PRD

New Gauge-Bosons - Dilepton

m	110 200	200 400	100 000	Q00 1900	1200 2000	2000 4500
mee [Gev]	110-200	200-400	400-000	000-1200	1200-3000	0000-4000
Z/γ^*	122000 ± 7000	14000 ± 800	1320 ± 70	70 ± 5	10.0 ± 1.0	0.008 ± 0.004
Top	8200 ± 700	2900 ± 500	200 ± 80	3.1 ± 0.8	0.16 ± 0.08	< 0.001
Diboson	1880 ± 90	680 ± 40	94 ± 5	5.9 ± 0.4	1.03 ± 0.06	< 0.001
Dijet & $W+$ jet	3900 ± 800	1290 ± 320	230 ± 70	9.0 ± 2.3	0.9 ± 0.5	0.002 ± 0.004
Total	136000 ± 7000	18800 ± 1000	1850 ± 120	88 ± 5	12.1 ± 1.1	0.011 ± 0.005
Observed	136200	18986	1862	99	9	0
$m_{\mu\mu}$ [GeV]	110-200	200-400	400-800	800-1200	1200-3000	3000-4500
Z/γ^*	111000 ± 8000	11000 ± 1000	1000 ± 100	49 ± 5	7.3 ± 1.1	0.034 ± 0.022
Top	7100 ± 600	2300 ± 400	160 ± 80	3.0 ± 1.7	0.17 ± 0.15	< 0.001
Diboson	1530 ± 180	520 ± 130	64 ± 16	4.2 ± 2.1	0.69 ± 0.30	0.0024 ± 0.0019
Total	120000 ± 8000	13700 ± 1100	1180 ± 130	56 ± 6	8.2 ± 1.2	0.036 ± 0.023
Observed	120011	13479	1122	49	8	0

<u> </u>
TABLE III. Summary of system a ic uncertainties on the ex
pected numbers of events at a dilepton mass of $m_{\ell\ell} = 2 \text{ Ter}, 8 \text{ TeV}$
where N/A indicates that the uncertainty is not applic \overrightarrow{A} is $\overrightarrow{A} \rightarrow \parallel$
Uncertainties $< 3\%$ for all values of m_{ee} or $m_{\mu\mu}$ are neglected
in the respective statistical analysis ₁₀ -2

Source $(m_{\ell\ell} = 2 \text{ TeV})$	Dielectrons		Din	nuons
	Signal	Backgr.	Signal	Backgr.
Normalization	4%	N/A	4%	N/A
PDF variation	N/A	11%	N/A	12%
PDF choice	N/A	10%	N/A_{-2}	0.3 fb^{6}
α_s	N/A	3%	N/A	3%
Electroweak corr.	N/A	2% ^µ	μ: h/dt_= 2	0.5 fb3 %
Photon-induced corr.	N/A	19%	0.5 / A	$1 \ 3\% \ 1.5$
Beam energy	< 1%	3%	< 1%	3%
Resolution	< 3%	< 3%	< 3%	3%
Dijet and $W + jets$	N/A	5%	N/A	N/A
Total	4%	15%	4%	15%

Events	10 ⁷ 10 ⁶ 10 ⁵ 10 ⁴ 10 ³ 10 ² 10	Expected limit Expected $\pm 1\sigma$ Expected $\pm 2\sigma$ Observed limit Z' _{SSM}	ATLAS $Z' \rightarrow ee$ $\int L dt = 20.3 \text{ fb}^{-1}$ s = 8 TeV		Data 20 Z/y* Top qua Dijet & V Diboson Z' SSM Z' SSM
	1				
	10 ⁻¹				
C Data/Expected	1.4 1.2 1 0.8 6.0 2	^{3 0.1} 3 0.2 3. M _{Z'_{SSM} [TeV]}	50.3 0.4 0.5	1	
ents	10		ATLAS		Data 20
ШĶ	10°		$Z' \rightarrow \mu \mu$		Z/γ* Top qua
	10 ⁵		$\int L dt = 20.5 \text{ fb}^{-1}$		Diboson
	10 ⁴		s = 8 TeV		Z' SSM
	10 ³		IGU		2 3310
	10 ²			CER	
	109.	8.2014		K	\mathcal{X}_{-}

10-1

Ruth Pö	ottgen
---------	--------

28

	$e\nu$	μu
$W \to \ell \nu$	2.65 ± 0.10	2.28 ± 0.21
$Z \to \ell \ell$	0.00163 ± 0.00022	0.232 ± 0.005
Diboson	0.27 ± 0.23	0.46 ± 0.23
Top	0.0056 ± 0.0009	0.0017 ± 0.0001
Multi-jet	0.066 ± 0.020	0.046 ± 0.039
Total	2.99 ± 0.25	3.01 ± 0.31

Table 4. Expected numbers of events from the various background sources in each decay channel for $m_{\rm T} > 1500$ GeV, the region used to search for a W' with a mass of 2000 GeV. The $W \to \ell \nu$ and $Z \to \ell \ell$ rows include the expected contributions from the τ -lepton. The uncertainties are statistical.

Table 5. Relative uncertainties on the selection efficiency ε_{sig} and expected number of background events N_{bkg} for a W' (upper part of the table) and W^* (lower part of the table) with a mass of 2000 GeV. The efficiency uncertainties include contributions from the trigger, reconstruction and event selection. The last row gives the total relative uncertainties.

	$\varepsilon_{ m sig}$		$N_{\rm h}$	okg
Source	$e\nu$	μu	$e\nu$	μu
$W' \to \ell \nu$				
Reconstruction and trigger efficiency	2.5%	4.1%	2.7%	4.1%
Lepton energy/momentum resolution	0.2%	1.4%	1.9%	18%
Lepton energy/momentum scale	1.2%	1.8%	3.5%	1.5%
$E_{\rm T}^{\rm miss}$ scale and resolution	0.1%	0.1%	1.2%	0.5%
Beam energy	0.5%	0.5%	2.8%	2.1%
Multi-jet background	-	-	2.2%	3.4%
Monte Carlo statistics	0.9%	1.3%	8.5%	10%
Cross-section (shape/level)	2.9%	2.8%	18%	15%
Total	4.2%	5.6%	21%	27%
$W^* \to \ell \nu$				
Reconstruction and trigger efficiency	2.7%	4.1%	2.6%	4.0%
Lepton energy/momentum resolution	0.4%	0.9%	3.0%	17%
Lepton energy/momentum scale	2.4%	2.4%	3.1%	1.5%
$E_{\rm T}^{\rm miss}$ scale and resolution	0.1%	0.4%	3.1%	0.6%
Beam energy	0.1%	0.1%	2.5%	1.9%
Multi-jet background	-	-	1.8%	2.6%
Monte Carlo statistics	1.2%	1.8%	6.7%	8.6%
Cross-section (shape/level)	0.2%	0.2%	17%	15%
Total	3.9%	5.1%	19%	25%

IG

Contact Interaction

8.0 Bata 9.0 Bata 0.1 arXiv: 207024 0

calculation of decay angle in Collins-Soper frame

z-acis bisecting angel between incoming partons

x-axis perpendicular to plane of incoming parton momenta

$$\cos\theta^* = \frac{p_z(\ell^+\ell^-)}{|p_z(\ell^+\ell^-)|} \frac{2(p_1^+p_2^- - p_1^-p_2^+)}{m(\ell^+\ell^-)\sqrt{m(\ell^+\ell^-)^2 + p_T(\ell^+\ell^-)^2}} \qquad |\mathsf{p}^{+\prime-}\mathsf{E}\mathsf{E}\mathsf{F}'\mathsf{P}_z|$$

angle between z-axis and outgoing negatively charged lepton

Leptons+Jets Extra Dimensions $\sum_{T}^{3500} p_{T}$ [GeV]

arXiv:1405.4254 accepted by JHEP

2500

3000

	Electron Channel		Muon Channel	
Min. $\sum p_{\rm T}$ [GeV]	Expected Background	Data	Expected Background	Data
2000	44 ± 12	47	22.8 ± 5.4	27
2200	19 ± 7	22	10.1 ± 3.2	12
2400	8.2 ± 3.7	5	4.5 ± 1.9	7
2600	3.5 ± 2.1	2	2.0 ± 1.3	2
2800	1.5 ± 1.2	0	0.89 ± 0.82	2
3000	$0.65\substack{+0.69 \\ -0.65}$	0	$0.40^{+0.53}_{-0.40}$	0
3200	$0.28_{-0.28}^{+0.40}$	0	$0.18\substack{+0.34\\-0.18}$	0

Angular Mom	Description	Excluded $M_{\rm th}$ value [TeV] for:		
Angular Moni.	Angular Mom. Description		$M_{\rm D} = 4 { m TeV}$	
Non-rotating	Black holes: High multiplicity remnant	6.2	5.7	
Rotating	Black holes: High multiplicity remnant	6.0	5.4	
Rotating	Black holes: Low multiplicity remnant	6.0	5.2	
Rotating	Production loss model (gravitons)	5.5	4.8	

event numbers

Drogogg	$E_{\rm T}^{\rm miss}$ threshold [GeV]					
r rocess	150	250	350	450		
ZZ	41 ± 15	6.4 ± 2.4	1.3 ± 0.5	0.3 ± 0.1		
WZ	8.0 ± 3.1	0.8 ± 0.4	0.2 ± 0.1	0.1 ± 0.1		
$WW, t\bar{t}, Z \to \tau^+ \tau^-$	1.9 ± 1.4	$0^{+0.7}_{-0.0}$	$0^{+0.7}_{-0.0}$	$0^{+0.7}_{-0.0}$		
Z + jets	0.1 ± 0.1	_	_	_		
W+jets	0.5 ± 0.3	_	_	_		
Total	52 ± 18	7.2 ± 2.8	1.4 ± 0.9	$0.4^{+0.7}_{-0.4}$		
Data	45	3	0	0		

systematic uncertainties

Uncontainty Course	$E_{\rm T}^{\rm miss}$ threshold [GeV]				
Uncertainty Source	150	250	350	450	
Statistical [%]	2	6	13	24	
Experimental [%]	3	6	9	8	
Theoretical $[\%]$	35	35	35	35	
Luminosity [%]	3	3	3	3	
Total [%]	35	36	38	43	

JG

Mono-jet, 8TeV

Background Predictions \pm (stat.data) \pm (stat.MC) \pm (syst.)							
	SR1	SR2	SR3	SR4			
$Z (\rightarrow \nu \bar{\nu}) + jets$	$173600 \pm 500 \pm 1300 \pm 5500$	$15600 \pm 200 \pm 300 \pm 500$	$1520 \pm 50 \pm 90 \pm 60$	$270 \pm 30 \pm 40 \pm 20$			
$W \rightarrow \tau \nu + jets$	$87400 \pm 300 \pm 800 \pm 3700$	$5580 \pm 60 \pm 190 \pm 300$	$370 \pm 10 \pm 40 \pm 30$	$39 \pm 4 \pm 11 \pm 2$			
$W \rightarrow ev + jets$	$36700 \pm 200 \pm 500 \pm 1500$	$1880 \pm 30 \pm 100 \pm 100$	$112 \pm 5 \pm 18 \pm 9$	$16 \pm 2 \pm 6 \pm 2$			
$W \rightarrow \mu \nu + jets$	$34200 \pm 100 \pm 400 \pm 1600$	$2050 \pm 20 \pm 100 \pm 130$	$158 \pm 5 \pm 21 \pm 14$	$42 \pm 4 \pm 13 \pm 8$			
$Z \rightarrow \tau \tau + jets$	$1263 \pm 7 \pm 44 \pm 92$	$54 \pm 1 \pm 9 \pm 5$	$1.3 \pm 0.1 \pm 1.3 \pm 0.2$	$1.4 \pm 0.2 \pm 1.5 \pm 0.2$			
$Z/\gamma^*(\rightarrow \mu^+\mu^-)$ +jets	$783 \pm 2 \pm 35 \pm 53$	$26 \pm 0 \pm 6 \pm 1$	$2.7 \pm 0.1 \pm 1.9 \pm 0.3$	-			
$Z/\gamma^*(\rightarrow e^+e^-)$ +jets	-	-	-	-			
Multijet	$6400 \pm 90 \pm 5500$	$200 \pm 20 \pm 200$	-	-			
$t\bar{t} + \text{single } t$	$2660 \pm 60 \pm 530$	$120 \pm 10 \pm 20$	$7 \pm 3 \pm 1$	$1.2 \pm 1.2 \pm 0.2$			
Dibosons	$815 \pm 9 \pm 163$	$83 \pm 3 \pm 17$	$14 \pm 1 \pm 3$	$3 \pm 1 \pm 1$			
Non-collision background	$640 \pm 40 \pm 60$	$22 \pm 7 \pm 2$	-	-			
Total background	$344400 \pm 900 \pm 2200 \pm 12600$	$25600 \pm 240 \pm 500 \pm 900$	$2180 \pm 70 \pm 120 \pm 100$	$380 \pm 30 \pm 60 \pm 30$			
Data	350932	25515	2353	268			

More 14TeV Prospects

