

Searches for Gravitational Waves

"Merging Neutron Stars" (Price & Rosswog)

Barry Barish Caltech IPA London – Aug 2014

Einstein's Theory of Gravitation

a necessary consequence of Special Relativity with its finite speed for information transfer

gravitational waves come from the acceleration of masses and propagate away from their sources as a space-time warpage at the speed of light

gravitational radiation binary inspiral of compact objects

Einstein's Theory of Gravitation gravitational waves

• Using Minkowski metric, the information about space-time curvature is contained in the metric as an added term, $h_{\mu\nu}$. In the weak field limit, the equation can be described with linear equations. If the choice of gauge is the *transverse traceless gauge* the formulation becomes a familiar wave equation

• The strain $h_{\mu\nu}$ takes the form of a plane wave propagating at the speed of light (c).

• Since gravity is spin 2, the waves have two components, but rotated by 45° instead of 90° from each other.

$$(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2})h_{\mu\nu} = 0$$

$$h_{\mu\nu} = h_{+}(t - z / c) + h_{x}(t - z / c)$$

Direct Detection of Gravitational Waves

Gravitational Wave Astrophysical Source

> Terrestrial detectors Virgo, LIGO, KAGRA, GEO600

Detectors in space LISA

LIGO International Network on Earth simultaneously detect signal

LIGO Virgo **GEO** KAGRA CANADA ED STATES ATLANTIC PACIFIC OCEAN OCEAN OCEAN U.S. . LIGO India UNDONEST BRAZIL INDIA AUSTRALIA OCEAN CHIL SOUTH SOUTH TEALAN PACIFIC ATLANTIC OCEAN OCEAN June 1998 Scale 1:134 000 000 Antarctica Robinson Projection 19C boo M 19C skelleren bankant Boundary representation is 802599 (R00352) 6-98

decompose the polarization of gravitational waves

Free masses

Interferometer Concept

Simultaneous Detection

LIGO

LIGO Facilities beam tube enclosure

minimal enclosure reinforced concrete no services

LIGO beam tube

- LIGO beam tube under construction in January 1998
- 65 ft spiral welded sections
- girth welded in portable clean room in the field

1.2 m diameter - 3mm stainless 50 km of weld

Vacuum Chambers vibration isolation systems

- » Reduce in-band seismic motion by 4 6 orders of magnitude
- » Compensate for microseism at 0.15 Hz by a factor of ten
- » Compensate (partially) for Earth tides

Seismic Isolation springs and masses

LIGO vacuum equipment

• support structure is welded tubular stainless steel

beam

splitter

test mass

est mass

photodetector

light storage arm

• suspension wire is 0.31 mm diameter steel music wire

fundamental violin mode frequency of 340 Hz

light storage arm

test mass

test mass

LIGO Optics fused silica

- Surface uniformity < 1 nm rms</p>
- Scatter < 50 ppm
- Absorption < 2 ppm</p>
- ROC matched < 3%</p>
- Internal mode Q's > 2 x 10⁶

CSIRO data

installation and alignment

LIGO Astrophysical Sources of Gravitational Waves

Coalescing Compact Binary Systems: Neutron Star-NS, Black Hole-NS, BH-BH

- Strong emitters, well-modeled,
- (effectively) transient

Credit: Chandra X-ray Observatory

Asymmetric Core Collapse Supernovae

- Weak emitters. not well-modeled ('bursts'), transient

Cosmic Gravitationalwave Background

- Residue of the Big Bang
- Long duration, stochastic background

Spinning neutron stars

- (nearly) monotonic waveform

- Long duration

Astrophys. J. 722 (2010) 1504

Advanced LIGO

Major technological improvements

Advanced LIGO

Parameter	Initial LIGO	Advanced LIGO	
Input Laser Power	10 W (10 kW arm)	180 W (>700 kW arm)	
Mirror Mass	10 kg	40 kg	
Interferometer Topology	Power-recycled Fabry- Perot arm cavity Michelson	Dual-recycled Fabry- Perot arm cavity Michelson (stable recycling cavities)	
GW Readout Method	RF heterodyne	DC homodyne	
Optimal Strain Sensitivity	3 x 10 ⁻²³ / rHz	Tunable, better than 5 x 10 ⁻²⁴ / rHz in broadband	
Seismic Isolation Performance	$f_{low} \sim 50 \; \mathrm{Hz}$	$f_{low} \sim 13 \text{ Hz}$	
Mirror Suspensions	Single Pendulum	Quadruple pendulum	

Sensitivity as of 23 July 2014

- The team is working on stability rather than sensitivity
- But present sensitivity is already similar (or better, at low frequencies) to the best sensitivity achieved with initial 'enhanced' LIGO
- Strain sensitivity is better after 3 months than after 6 years in iLIGO –

LIGO Predicted Rates – Adv LIGO

Neutron Star Binaries:

Initial LIGO: Average BNS reach ~15 Mpc → rate ~1/50yrs Advanced LIGO: ~ 200 Mpc *"Realistic rate" ~ 40/year* (but can be 0.4-400)

Other binary systems:

NS-BH: 0.004/yr \rightarrow 10/yr BH-BH: 0.007/yr \rightarrow 20/yr

Class. Quant. Grav. 27, 173001 (2010)

Advanced GW Detectors run plan

	Estimated	$E_{\rm GW} =$	$10^{-2}M_{\odot}c^{2}$			Number
	Run	Burst Ra	ange (Mpc)	BNS Rang	ge (Mpc)	of BNS
Epoch	Duration	LIGO	Virgo	LIGO	Virgo	Detections
2015	3 months	40 - 60	_	40 - 80	_	0.0004 - 3
2016 - 17	6 months	60 - 75	20 - 40	80 - 120	20 - 60	0.006 - 20
2017 - 18	9 months	75 - 90	40 - 50	120 - 170	60 - 85	0.04 - 100

Gravitational waves a new window on the universe

