



# An Experiment for Direct Detection of Dark Energy

#### Jonathon Coleman Royal Society Research Fellow



#### Ultra Cold Atom Interferometry

Developing Next Generation Gravity Sensors & Gyroscopes for Direct Dark Energy Detection and Fundamental Physics





Work in Collaboration with Martin Perl (Nobel Laureate, visiting professor @ U. Of Liverpool)

Particle Physics Proto-Collaboration:



LIVERPOOL

### Introduction

- Motivate a parameter space search for direct detection of the dark contents of the vacuum
- Introduce the concept of atom interferometry
- Construction of the prototype at Liverpool
- Future Upgrade Scenarios

M. Perl et al, A terrestrial search for dark contents of the vacuum, such as dark energy, using atom interferometry arXiv:1101.5626

### Nature of Dark Energy

- Cosmological observations indicate 68% of the universe is dark energy.
- Present theory offers no fundamental understanding of the nature of dark energy
- Dark energy has a small but non-zero density 1.67x10<sup>-27</sup> kg m<sup>-3</sup>. Is this measureable on a terrestrial scale?



# **Conditions of Detection**

An experiment to investigate the effect of Gravity on quantum systems.

Allows for the **Direct Detection** of Dark Energy

•Vacuum fluctuations are spatially inhomogeneous on the lab scale.

•The vacuum interacts with atoms in a non gravitational way.

if:

#### Theory with Caveats:



### **Experimental Concept**



- Two spatially separated interferometers in the same noise conditions.
- System is designed to minimize/ eliminate the effects of gravity and many other sources of noise

### Nature of Measurement

- not recording  $\Delta \phi$  which will average to zero,
- measure instead the root mean square  $\Delta \phi$  rms.
- can then determine the dark energy equivalent acceleration,  $g_{DF}$ .
- We expect to be able to detect the dark energy equivalent acceleration,  $g_{DF}$  with a precision of  $\rightarrow 10^{-1}$  $^{15} \text{ m/s}^2$ .



- sampling rate order of Hertz.
- Hence signal is a noise like.

# Analogy with Light Interferometer

- Split light into two beams.
- Beams travels two different paths.
- Recombine the beams into one.
- Measure the phase difference between the two paths.
- Phase difference related to change in path.

#### Why Atoms?

- Smaller wavelengths lead to a higher accuracy.
- Atoms have a wavelength  $\lambda = h/p$



### **Atom Interferometer Overview**

- Magneto optical trap (MOT) sources cold atom cloud.
- Atoms form optical molasses and dropped.
- Selects atoms in magnetically insensitive state and a narrower range of velocities.
- Interferometry splits the atom cloud, allow phase to accumulate and recombine cloud.
- Detect ratio of atoms in different states at bottom – related to phase difference.



#### Interferometry sequence



### **Phase Accumulation**

- Three components contribute to atoms phase.
- Phase is accumulated in free fall.

#### **Systematics**

- Laser phase is printed on the atoms with 'beamsplitters' or 'mirrors'
- A phase is associated with the atoms not quite recombining for detection.



$$\Delta\phi_{\rm total} = \Delta\phi_{\rm prop} + \Delta\phi_{\rm laser} + \Delta\phi_{\rm sep}$$

#### Atom Interferometer at Liverpool



Ultra-cold atom source.

State selection

Light pulse interferometry region

Detection.



#### **3D Atom Trap - Interferometer Source**



### **Frequency Control System**

- Many different frequencies required for the atom interferometer.
- Optical circuit generates all required frequencies from extended cavity diode lasers (ECDL) and acousto-optical modulators (AOM).



Required transitions for atom interferometer transitions

# Frequency generation and detection sequence components currently being commissioned and optimised



#### **Improving Sensitivity**

• depends upon having large phase shift  $\phi$ :

 $\phi$  = constant (gT<sup>2</sup>)

- T is time of flight for the atom cloud
- Prototype under construction height ~ 1 m and  $\varphi$  ~107 radians
- T<sup>2</sup> is proportional to h,
- h = 10 m, approx 10 x improvement in  $\phi$ ,
- Daresbury tower ~ 100 m
- benefits of exploiting this structure are obvious.



17

#### **Possible Site Location**



- Highly stable bedrock as foundations of Tower structure
- 8 m high previous Medium Energy Ion Source (MEIS) room ?



18/08/2014

#### The Future?

- 10 m Atom Interferometers are being developed worldwide
- Daresbury Tower is ideal for this



Center for Cold *Atom* Physics, Chinese Academy of Sciences, Wuhan

#### Stanford, USA



#### Roadmap

- Key Milestones Identified
- Manufacture & Cost Identified for Core Components
- Collaboration gaining critical Mass





#### Summary

- An Experiment to Investigate the Dark Content of the Vacuum
- Possible signature for Direct Detection of Dark Energy
- Investigating a new area of experiment
  - Unexplored phase space
- Rich area of Physics Measurements
- A possible future use of the tower

#### New Collaborators are Welcome

#### Backup slides

#### State of Art: AI Gravimeters + Gradiometers



### Measuring gravity as a Benchmark

- Laser frequencies need chirping to account for the Doppler shift of atoms.
- Varying chirping scans the interferometer fringes, which can be fit to obtain value of g.



doi:10.1088/0026-1394/38/1/4

## **Experimental Configuration**



#### To cancel systematic effects:

- Incorporate the two interferometers in one vacuum envelope,
  - reduce problems from common mode noises such as vibrations.
  - drop sources for simplicity.
- Sources are staggered vertically,
  - total phase change for each atom is measured during the same velocity period.