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Dark matter:
things we know

[van Albada et al. ApJ 295 1985]
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DM forms structures
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Universe Is 26.8% DM

[Markevitch et al. Apd 606 2003]
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Dark matter:
things we don't kKnow

 Mass? Well-motivated candidates from sub-sub-eV (axions) to
10"° GeV (WIMPZILLAS)

* Non-gravitational interactions with visible matter? elastic/
inelastic, spin-independent/dependent, light/heavy mediator...or
maybe none at all (gravitino)?

e Dark sector”? SM is complex, why not a whole dark sector with
multiple states, self-interactions, decays, etc”

* What does our local halo look like? Local density? Velocity
distribution might be Maxwell-Boltzmann, but N-body simulations
suggest not [Kuhlen et al. 0912.2358] and this has a strong eftect on
direct detection

How tar can we get making as few assumptions as possible”?



(S1)-Direct detection
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No assumptions about DM halo, easy to compare
multiple experiments (esp. signal vs. exclusion)



What will an emerging direct
detection signal look like™

Excellent energy resolution

binning In Er-space

Backgrounds are extremely low

Given current hints, probably O(1-10) events at first

Want to keep all possible information - avoid

Test signal against as many DM kinematics as

possible (elastic, inelastic, exothermic, ...)
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Properties of velocity integral

[Fox, Liu, Weiner 1011.1915]

Integrand is positive-definite:

g(Umzn) — / f(V N VE)CZSU

ML

Monotonically decreasing for any f
— powerful consistency conditions

Additional kinematic input: vmin(ERr)

E.g. elastic scattering: vin(Er) = \/

(assume elastic for this part of the talk)



Null results - setting limits

1-to-1 mapping: E, < v
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At each vg, most conservative halo integral is step function
(all others give more total events by monotonicity)

Plug into rate formula, use your favorite confidence
estimator to get height g(vo), repeat for all vo in range



Positive signals

1-to-1 mapping for each energy bin: [Ey, Es| <> [v1, vo]

Events in bin [E1, Es] — Preferred values in
g — Umin Space

Can rule out a DM interpretation if preferred values
are not monotonic within some confidence interval
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Comparing experiments

[Frandsen et al. 1111.0292]

0y O
Rescale halo integral: §(vmin) = =—9(Vmin)
: X \
94 % common to all expts.
Umin

Excluded = excluded for all halos

Umz’n(ER) —

myFEgr Can even compare non-overlapping
2%, Er ranges depending on mn

Nicely complementary to usual m, — o, presentation



[l. Unbinned halo-
independent methods for
elastic scattering



Positive signals - unbinned

[YK, Fox, McCullough, 1403.6830]

Binning best for lots of events, but ambiguous and
not so useful for emerging signals with few events

Avolid this by using extended maximum likelihood method:
[R.J. Barlow, Nucl. Instrum. Meth. A297 (1990)]

total expected events total rate (signal + background)

for given params. \ /
_ N
r € NE IO[ dRT
No! 11 dEr|g, _p,

N\

observed recoll energies
(no binning!)

Key point: £ penalizes against more expected events



Positive signals - unbinned

NE X /dE}%.é(fUmzn(E}{)) X /dvmin g(vmz’n)

Monotonicity prefers step function form for g(vmin)

worst fit - | i

(for extended LL) \»Mm step positions
gl e ’ fixed by measured
2 recoil energies
= 2of _~ (for perfect
5 energy resolution)
best fit — Vi = Umz’n(Ei)




Finite-resolution eftects

dRrt
dER
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detector resolution
function

gcontributes for all E%, not just measured E; -
does step function still maximize likelihood”

Yes, but positions of steps can float:
no longer fixed at vimin (F;)
(proof by variational technigues)

— 2Np-parameter maximization (heights and positions)



Example: CDMS-Si vs. LUX
and XENON-10

Apply method for 3 ocbserved CDMS events
vs. null results of LUX and XENON
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One p\ot, all DM masses

(Eg) = 28Xy (ER)
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One plot contains
all info necessary
[0 compare expts.
for any DM mass!*

*for single target material

1-to-1 mapping,
preserves
order of events
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[||. Generalization for
non-vanilla DM



INnelastic kinematics

my @ ‘m;(:mX—I—(S/Z

\ / 0 > 0 : “inelastic”

N 1 E
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V2myER | Ny
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0 < 0 :“exothermic’

Mapping ERr < Umin NO lONnger 1-to-1!

:



Multi-channel
scattering kinematics

X 15 I Model-independent parameterization:
g,
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Model-independent bounds require many-to-1 Vmin



Effects of many-to-1 Vmin

For a given form of vmin(ER),
mapping of measured Er to vmin Space is unambiguous...
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Halo-iIndependent method
for general kinematics

YK, Fox, McCullough, 1409.xxxx]
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(only a single step for setting limits)

Can prove as before that for sufficiently sharp

energy resolution, g(vmin ) still @ sum of step functions

dR Nim,, .
| =AM CR(A, ) / dERG(E;, ER)e(ER)F*(ER)G(Vmin(ER))
dER E; 2:unx

Plug in “unfolded” form for g, apply method exactly as before



Sample applications

Exothermic: CDMS-Si vs. LUX and XENON

10~41}
ExoDDDM w/standard halo
shown to be a good fit, T 107
see if this holds with S 1043
halo-independent analysis
10~44}
[McCullough and Randall, 1307.4095]

Multi-channel: model-independent
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summary

-

Monotonic velocity integral
gives consistency conditions
ga Torany halo

-

Can apply halo-independent
methods without binning
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Non-vanilla DM can give
NON-MONOtONIC Vmin,
method still works!




Conclusions and outlook

DM direct detection making fantastic progress

* Emerging signals most likely to be seen in a small
number of events, so need unbinned methods to
maximize available information

e Still many DM unknowns, so extract information
independent of DM halo and as agnostic as possible
w.r.t. DM model (not necessarily elastic scattering!)

* Halo-independent methods are useful for
experimentalists and theorists alike



Backup slides



Variational proof for monotoniC Vmin

L[g] = / dER K(ER)§(ER) — %log (uf,; + / dER G(E;, ER)K (E}a)é(E}a)>

o

form factor, eff., etc. BG rate

Monotonicity constraint: dg/dE, > 0
KKT conditions (Lagrange multipliers for inequality):

0L dq
=0, "EOM’f
55 app, ) BOMfore
dg
< .
dE}z <0, constraint

q(ER) >0, positivity
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Variational proof for monotoniC Vmin

L[g] = / dER K(ER)§(ER) — %Cilog (uf,; + / dER G(Ei, ER)K (E}a)é(E}%))

o

form factor, eff., etc. BG rate

Assume nonzero derivative. E.O.M reduces to
No

S G(Ei, Eo) _
1 Vi

/

some constant

But G is a resolution function and sharply peaked,
so this only has discrete solutions - steps



