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Dark matter:  
things we know

Galaxies have halos Universe is 26.8% DM

DM forms structures �/m < 1.3 barn/GeV

[van Albada et al. ApJ 295 1985]

[Via Lactea, Zemp MPLA 24 2009]

[Planck collab. A&A 2014]

[Markevitch et al. ApJ 606 2003]



Dark matter:  
things we don’t know

• Mass? Well-motivated candidates from sub-sub-eV (axions) to 
1013 GeV (WIMPZILLAS) 

• Non-gravitational interactions with visible matter? elastic/
inelastic, spin-independent/dependent, light/heavy mediator…or 
maybe none at all (gravitino)? 

• Dark sector? SM is complex, why not a whole dark sector with 
multiple states, self-interactions, decays, etc? 

• What does our local halo look like? Local density? Velocity 
distribution might be Maxwell-Boltzmann, but N-body simulations 
suggest not [Kuhlen et al. 0912.2358] and this has a strong effect on 
direct detection

How far can we get making as few assumptions as possible?



(SI)-Direct detection

Usual method:

Halo-independent: DM model limits/preferred values 
in                    space

No assumptions about DM halo, easy to compare  
multiple experiments (esp. signal vs. exclusion)
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What will an emerging direct 
detection signal look like?

• Backgrounds are extremely low 

• Excellent energy resolution 

• Given current hints, probably O(1-10) events at first 

• Want to keep all possible information - avoid 
binning in ER-space 

• Test signal against as many DM kinematics as 
possible (elastic, inelastic, exothermic, …)

This talk: focus on unbinned methods  
for general kinematics



Outline
I. Exploiting monotonicity  

of DM velocity integral

II. Unbinned halo-independent  
methods for elastic scattering

III. Methods for non-vanilla 
DM (inelastic, exothermic,  

multiple channels)
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I. Exploiting 
monotonicity



Properties of velocity integral
Integrand is positive-definite:

Monotonically decreasing for any f

g(vmin) =

Z 1

vmin

f(v + vE)

v
d3v

[Fox, Liu, Weiner 1011.1915]

powerful consistency conditions

Additional kinematic input: 

E.g. elastic scattering:

vmin(ER)

vmin(ER) =

s
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2µ2
N�

=)

(assume elastic for this part of the talk)



Null results - setting limits

g(vmin) = g(v0)✓(v0 � vmin)

At each    , most conservative halo integral is step function 
(all others give more total events by monotonicity)

some other halo

Plug into rate formula, use your favorite confidence 
estimator to get height        , repeat for all     in range

1-to-1 mapping:

v0
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g
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g(v0) v0

E0 $ v0



Positive signals

Events in bin preferred values in 
              spaceg � vmin

!

Can rule out a DM interpretation if preferred values 
are not monotonic within some confidence interval
g

vmin vmin

g

X

1-to-1 mapping for each energy bin: [E1, E2] $ [v1, v2]

[E1, E2]



Comparing experiments
Rescale halo integral: g̃(vmin) =

⇢��n

m�
g(vmin)

common to all expts.

Excluded = excluded for all halos
vmin

Nicely complementary to usual               presentationm� � �n

vmin(ER) =

s
mNER

2µ2
N�

can even compare non-overlapping 
ER ranges depending on mN 

g̃

[Frandsen et al. 1111.0292]



II. Unbinned halo-
independent methods for 

elastic scattering



Avoid this by using extended maximum likelihood method:
[R.J. Barlow, Nucl. Instrum. Meth. A297 (1990)]

L =
e�NE

NO!

NOY

i=1

dRT

dER

����
ER=Ei

total rate (signal + background)

observed recoil energies 
(no binning!)

total expected events 
for given params.

Key point:     penalizes against more expected eventsL

[YK, Fox, McCullough, 1403.6830]
Positive signals - unbinned

Binning best for lots of events, but ambiguous and  
not so useful for emerging signals with few events



Monotonicity prefers step function form for 

NE /
Z
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Positive signals - unbinned



Finite-resolution effects

   contributes for all      , not just measured     -  
does step function still maximize likelihood?
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Yes, but positions of steps can float:  
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(proof by variational techniques)
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Example: CDMS-Si vs. LUX 
and XENON-10

Apply method for 3 observed CDMS events 
vs. null results of LUX and XENON
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One plot, all DM masses
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all info necessary 
to compare expts. 
for any DM mass!*
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*for single target material



III. Generalization for 
non-vanilla DM



Inelastic kinematics

N
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Multi-channel  
scattering kinematics

Model-independent parameterization:
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Effects of many-to-1 vmin
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Halo-independent method 
for general kinematics

vmin
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(only a single step for setting limits)

Can prove as before that for sufficiently sharp  
energy resolution,            still a sum of step functionsg̃(vmin)

unambiguous
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[YK, Fox, McCullough, 1409.xxxx]

g̃



Sample applications
Exothermic: CDMS-Si vs. LUX and XENON

Multi-channel: model-independent limits and envelopes
g̃

vmin

ExoDDDM w/standard halo  
shown to be a good fit, 

see if this holds with  
halo-independent analysis
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Figure 5: 90% best-fit regions (CDMS-Si shaded gray and CRESST-II shaded orange)
and 90% exclusion limits (XENON10 solid black, XENON100 dashed red, CDMS-Ge dot-
dashed blue, CRESST-II low threshold analysis solid green and SIMPLE in dotted purple).
Elastic and exothermic scattering of standard halo DM are shown in the upper panels, and
ExoDDDM below. Elastic scattering of light DM gives a good fit to the CDMS-Si events,
although there is significant tension with null results. ExoDM reduces the tension and opens
up additional parameter space consistent with CDMS-Si and limits from the null search
results [30]. ExoDDDM scattering allows for a CDMS-Si interpretation with heavier DM
mass (lower right). For lighter ExoDDDM (lower left), the majority of the favored parameter
space is consistent with the strongest bounds and the DM mass favored in asymmetric DM
models.

For the DDDM velocity distribution chosen here, the 12.3 keV event does not originate from
ExoDDDM scattering. However, this does not lead to a bad fit for ExoDDDM scattering since
O(0.7) events are expected from background alone, and the 12.3 keV event is accommodated
by this expected background rate.

If the CDMS-Si events really were due to ExoDDDM then this explanation could be
verified in two ways. First, since the recoil spectrum is much more peaked than for standard
halo DM or ExoDM, further integrated exposure with a silicon detector should see events

– 10 –

[McCullough and Randall, 1307.4095]

CDMS
XENON-10

XENON-100



Summary

Can apply halo-independent 
methods without binning

Non-vanilla DM can give 
non-monotonic vmin, 
method still works!
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Monotonic velocity integral 
gives consistency conditions 

for any halo



Conclusions and outlook
• DM direct detection making fantastic progress 

• Emerging signals most likely to be seen in a small 
number of events, so need unbinned methods to 
maximize available information 

• Still many DM unknowns, so extract information 
independent of DM halo and as agnostic as possible 
w.r.t. DM model (not necessarily elastic scattering!) 

• Halo-independent methods are useful for 
experimentalists and theorists alike 



Backup slides



Variational proof for monotonic vmin

Monotonicity constraint: dg̃/dE0
R � 0
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KKT conditions (Lagrange multipliers for inequality):

complementarity



Variational proof for monotonic vmin
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But G is a resolution function and sharply peaked, 
so this only has discrete solutions - steps


