Latest Results from the Alpha Magnetic Spectrometer on the International Space Station

Martin Pohl Université de Genève IPA London 21.08.2014

AMS collaboration 16 Countries, 60 Institutes and 600 Physicists

Cosmic Ray Measurements

Standard origin:

- spectrum
- chemical and isotopic composition
- sources and acceleration mechanism

Non-standard origin:

- dark matter
- residual antimatter

Acceptance × exposure determines energy reach!

AMS-02 Launch

After 12 years of construction, integration, test...

STS-134 Endeavour:

- Successful launch: May 16, 2011, 14:56
- Docking with ISS: May 17, 17:59
- AMS installation complete: May 19, 11:46
- AMS up and running: May 19, 16:38
- First He nucleus: May 19, 16:42

Positron Fraction = $\Phi(e^+) / [\Phi(e^+) + \Phi(e^-)]$

Physics of Positron Fraction

M. Turner and F. Wilczek, Phys. Rev. D42 (1990) 1001;
J. Ellis, 26th ICRC Salt Lake City (1999) astro-ph/9911440;
H. Cheng, J. Feng and K. Matchev, Phys. Rev. Lett. 89 (2002) 211301;
S. Profumo and P. Ullio, J. Cosmology Astroparticle Phys. JCAP07 (2004) 006;
D. Hooper and J. Silk, Phys. Rev. D 71 (2005) 083503;
E. Ponton and L. Randall, JHEP 0904 (2009) 080;
G. Kane, R. Lu and S. Watson, Phys. Lett. B681 (2009) 151;
D. Hooper, P. Blasi and P. D. Serpico, JCAP 0901 025 (2009) 0810.1527; B2
Y–Z. Fan et al., Int. J. Mod. Phys. D19 (2010) 2011;
M. Pato, M. Lattanzi and G. Bertone, JCAP 1012 (2010) 020.

Separation Power for p/e⁺ >10⁶

- a) Minimal material in the TRD and TOF So that the detector does not become a source of e⁺.
- b) A magnet separates TRD and ECAL so that e⁺ produced in TRD will be swept away and not enter ECAL

In this way the rejection power of TRD and ECAL are independent

c) Matching momentum of 9 tracker planes with ECAL energy measurements

AMS data on ISS: 424 GeV positron

From: Matteo Rini [mrini@aps.org]
Sent: 02 January 2014 19:09
To: Samuel Ting
Subject: your AMS paper as a 2013 Physics Highlights

Dear Sam,

this is just to let you know that your article the first AMS data has been selected in our 2013 APS Physics Highlights (<u>http://physics.aps.org/articles/v6/139</u>).

Congratulation on this work, which has generated a lot attention among our readers, the press and the scientific community.

AMS Positron Fraction 2013

Low energy measurements include HEAT, CAPRICE, TS93 ...

AMS Data: e⁺ fraction

AMS expectation: $\Phi(\bar{p})$

Interpretation Example: Single Pulsar

Tim Linden and Stefano Profumo arXiv:1304.1791v1 [astro-ph.HE] 5 Apr 2013

AMS Data: e⁺ fraction

Fermi/HESS: e⁻+e⁺

See also: Cholis and Hooper, arXiv:1304.840v1 [astro-ph.HE] 6 Apr 2013

Interpretation Example: Pulsars (+ DM?)

Peng-Fei Yin, Zhao-Huan Yu, Qiang Yuan and Xiao-Jun Bi arXiv:1304.4128v1 [astro-ph.HE] 15 Apr 2013

Accurate data on shape of cut-off are badly needed

More Information: Anisotropy

The fluctuations of the positron ratio e⁺/e⁻ are isotropic.

The anisotropy in galactic coordinates: δ ≤ 0.030 at the 95% confidence level

Dark Matter Searches Annihilation (in Space) $\chi + \chi \rightarrow e^+, \overline{p}, \gamma, \dots$ **AMS Scattering** (Underground **Experiments** $p,\overline{p},e^{-},e^{+},\gamma$ χ . $d + \chi \leftarrow d + \chi$ World Wide): LUX DARKSIDE $p, \overline{p}, e^-, e^+, \gamma$ **XENON 100 CDMS II** ... LHC $\chi + \chi \leftarrow p + p$ **Production (at Accelerators)**

AMS Positron Fraction 2014 @ Low Energies

11 million electrons and positrons

AMS Positron Fraction 2014 @ High Energies

FIG. 3. The positron fraction above 10 GeV, where it begins to increase. The present measurement extends the energy range to 500 GeV

AMS Positron Fraction 2014 vs Minimal Model

FIG. 4. The positron fraction measured by AMS and the fit of a minimal model (solid curve, see text) and the 68% C.L. range of the fit

AMS Positron Fraction 2014 vs Minimal Model

Positron Flux Scaled by E³ Prior to AMS

Positron Flux Scaled by E³ AMS 2014

Positron Flux Scaled by E³

Electron Flux Scaled by E³ Prior to AMS

Electron Flux Scaled by E³ AMS 2014

Electron+Positron Flux Scaled by E³ Prior to AMS

Electron+Positron Flux Scaled by E³

AMS 2014

Event Sample: ~ **10.5** million e[±] events

Energy Range: 0.5 GeV to 1 TeV

During lifetime of ISS, AMS expects to collect 300 billion Cosmic Rays Examples of Future Plans

Origin of Positron Fraction: Particle Physics or Astrophysics? 0.2 **Positron fraction Pulsars** 0.15 $m\chi = 700 \text{ GeV}$ 0.1 0.05 **Collision of cosmic rays** 0 1000 200 400 600 800 e[±] energy [GeV]

Flux of Nuclei: Redundant Charge Measurements

Low systematics, control of nuclear fragmentation

Flux of Nuclei: Control of Nuclear Fragmentation

Latest AMS Results and Future Plans:

Cosmic rays

Proton spectrum

Helium spectrum

Electron Spectrum

Boron Spectrum

Carbon Spectrum

Boron/Carbon ratio

Oxygen

Dark Matter

Positron Fraction

Anisotropy Positron Spectrum

Antiproton Ratio

Future Plans
Positron Fraction

Anisotropy

Antiproton Ratio

Photons

Antimatter Search

Strangelet Search

