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From: Matteo Rini [mrini@aps.org] 
Sent: 02 January 2014 19:09 
To: Samuel Ting 
Subject: your AMS paper as a 2013 Physics Highlights 
 
Dear Sam,  
 
this is just to let you know that your article the first AMS data has been selected in 
our 2013 APS Physics Highlights (http://physics.aps.org/articles/v6/139). 
 
Congratulation on this work, which has generated a lot attention among our 
readers, the press and the scientific community.  
 
Best regards, 
 
Matteo 
 
--  
Matteo Rini, PhD   
Deputy Editor, Physics   
mrini@aps.org   
http://physics.aps.org 

One year  
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FIG. 6: The positron fraction (left) and electron flux (right) for the background together with an exotic component from
multiple pulsars or DM annihilation in τ+τ− channel. The “mock” DAMPE data are assumed to be contributed by multiple
pulsars and are generated using the pulsar set denoted by black dot-dashed line in Fig. 4. The DM contribution corresponds
to the best fit of an MCMC parameter scan.

cles [15]. Here the e/p separation is taken to be 5 × 105

corresponding to the detector thickness of 32 radiation
lengths [32]. The relative systematic uncertainty is esti-
mated by (Np/5× 105)/Ne.
We use the MCMC method to explore the possible

DM parameter space to fit the mock electron/positron
flux data for DAMPE, the positron fraction data from
AMS-02 and the electron flux data from PAMELA. As
above, the proton injection spectrum is fixed, while the
parameters of the primary electron injection spectrum
are free. Therefore, the background corresponding to the
fit for the DM is usually different with that for multiple
pulsars. The DM annihilation final states are taken to
be τ+τ−, which induce a soft positron spectrum favored
by the AMS-02 result. From the results shown in Fig. 6,
we find that the behavior of the electron/postron spec-
trum from the DM source is mainly determined by the
mock DAMPE data below ∼ 300 GeV due to very small
uncertainties, and it cannot reproduce the fine structures
above 300 GeV at the data. If the differences between
the electron/positron spectra from the DM and the pul-
sar origins are significant as the examples shown here,
DAMPE would have the capability to discriminate these
two scenarios.

VII. DISCUSSIONS AND CONCLUSIONS

In this work, we investigate the pulsar origin of the
positron fraction measured by AMS-02 recently. We first
consider the case that the high energy positrons are pro-
duced by a single pulsar, such as Geminga or Monogem.
We find the AMS-02 data can be well fitted in this case
with a soft power-law index of α ∼ 2. Such a soft spec-

trum requires a large injection energy from the pulsar,
which is comparable to the total energy loss of the pul-
sar derived from Eq. (3). Considering the uncertainties
from CR propagation parameters and the pulsar models,
such a tension may be relaxed. We then consider the
case that the positrons are from multiple pulsars in the
ATNF catalogue. We find such scenario can also fit the
AMS-02 data very well.

It is shown that pulsars can be a natural explanation
of the AMS-02 positron excess. Compared with the DM
scenario, pulsar scenario may have some distinct features
to be distinguished from the DM models. It is very
possible that there might be fine structures on the elec-
tron/positron spectrum in the pulsar scenario, because
the parameters of pulsars might differ from one to an-
other [9]. Furthermore, since one or several nearby pul-
sar(s) may dominate the flux of high energy positrons,
it may induce a remarkable anisotropy [5, 15]. Both the
fine structures and the anisotropy could be tested with
future observations.
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The fluctuations of the positron ratio e+/e− are isotropic. 

The anisotropy in galactic coordinates: 
δ ≤ 0.030 at the 95% confidence level 
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Positron Flux Data 
(before AMS) 

Fermi data above  
126 GeV are off scale.  



Event Sample: ~ 0.58 million e+ events 

Energy Range: 0.5 GeV to 500 GeV 



Fermi data above 100 GeV are off scale 
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Energy Range: 0.5 GeV to 1 TeV 

Event Sample: ~ 10.5 million e± events 
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102 6.2. Flux Formula and Analysis Strategy

Figure 6.1 – Projected Y � Z view of the AMS-02 detector. The red curve represents the
trajectory of a particle through the instrument with the various measurements of the particle
charge Z at various levels of the instrument [98].

The RICH provides a good charge identification power using the signal created by particles
traversing the Aerogel part of the radiator. Finally, although an electromagnetic calorimeter,
the first layers of the ECAL also provide some reliable estimation of the charge for light nu-
clei. Figure 6.1 illustrates the principle of redundant charge measurement inside AMS-02. The
six panels show the response of the different subdetector units to light cosmic ray nuclei. A
detailed review of the light nuclei identification power of AMS-02 can be found in [98]. These
individual measurements are proven to be very useful, in particular to control fragmentation
in the detector. For example, the layer 1 can be used to identify a carbon nucleus entering
the detector from the top. If a fragmentation occurs in the TRD or in the upper ToF, the
inner tracker is typically able to measure the resulting boron product. An example of such a
fragmented carbon event is shown in Figure 6.2.

To study the individual response of the various subdetectors to different nuclei, we have
considered 9 different estimators of the particle charge : the tracker layer 1, the TRD, the
Upper ToF plane, the tracker layer 2, the inner tracker (all 7 layers together), the inner tracker
excluding layer 2 (for the unbiased study of the layer 2 response), the lower ToF plane, the
RICH Aerogel and the tracker layer 9.

We have intentionally limited our analysis to nuclei up to silicon (Z = 14) due to the
degrading tracker resolution for higher charges. In the future, the ToF could be used to extend
the measurement to heavier nuclei.

6.2 Flux Formula and Analysis Strategy

The differential flux of a given cosmic ray species in a given rigidity interval can be expressed
as :

�Z(R,R+�R) =

NZ(R,R+�R)

�T ⇥AGeom ⇥⇧i✏i ⇥�R
(6.1)
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ZTOF_LOW=5.2 

ZTRK_IN=4.8 

ZRICH=5.1 

ZTRK_L1=6.1 

ZTRD=6.0 

Z0=9.9 

Z1=5.3 

Figure 6.2 – Event display (in both bending and non-bending projections) of a carbon nucleus
entering the AMS detector from the top and fragmenting into boron in the upper ToF plane.
The tracker layer 1 measures a charge of 6.1, the TRD 6.0, while the inner tracker and RICH
measure a charge corresponding to boron (Z=5). In the upper ToF plane where the interaction
presumably takes place, the measurement integrates the products of the interaction and typi-
cally measures a higher charge value. One can also notice from the projection on the right side
some higher activity in the TRD, which could also indicate that the fragmentation process has
taken place at that level.
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