Symmetry violation in tau decays ~Tau Lepton Flavor violation and CP violation in Lepton sector~

Kiyoshi Hayasaka (KMI, Nagoya University)

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

Tau lepton and B-factories

- Tau lepton
 - the heaviest lepton = 1.78GeV/c^2
 - the only lepton able to decay to meson(s) = various decays allowed
 - belonging to the third generation
 - **B-factory**
 - Vs is set to 10.6GeV (=Y(4S) mass)
 - There, $\sigma(bb)=1.1$ nb while $\sigma(\tau\tau)=0.9$ nb \rightarrow similar number of tau-pairs are produced: A B-factory is also a tau-factory!
 - Since tau-pair is produced, clear tau-tag is possible. (cf. LHCb)
 - There are two B-factories in the world, i.e., Belle and BaBar experiments.

Belle Experiment @ KEK

Belle has finished data taking in 2010 with >1ab⁻¹ of data: ~2x10⁹ taus

Belle detector is a multi-purpose and asymmetric detector and has good: •K/pi separation

- lepton identification
- hermeticity

BaBar Experiment @ SLAC

Also BaBar has features similar to those for Belle, i.e., particle identification, etc.

CPV IN LEPTON SECTOR

CPV in lepton sector

- CPV in lepton sector has not been observed yet.
- CPV in lepton sector is strongly suppressed in SM.
 - An observation means a clear signal of the new physics!
- Tau is a good probe for it. One possible decay including CPV is $\tau \rightarrow K_s^0 \pi \nu$:

-Effective Hamiltonian

Scalar Boson

Differential decay width and CPV

The effect from CPV appears via the interference between SM • term and NP term.

$$\frac{d\Gamma(\tau^{-})}{dQ^{2}d\cos\theta d\cos\beta} = \left[A(Q^{2}) - B(Q^{2})(3\cos^{2}\Psi - 1)(3\cos^{2}\beta - 1)\right] \cdot |F|^{2} + m_{\tau}^{2} |F_{s}|^{2}$$

$$-C(Q^{2})\cos\beta\cos\psi \cdot \operatorname{Re}(FF_{s}(\eta_{s}))$$
Contain CPV terms
$$Q^{2}=M_{\kappa\pi}^{2}, \quad A(Q^{2}), B(Q^{2}), C(Q^{2}): \text{ known function.}$$

$$\beta: \text{ direction of Ks in } K_{s}\pi \text{ rest frame} \qquad F: \text{ Vector form factor}$$

$$\Psi: \text{ direction of } \kappa_{s}\pi \text{ system in the } \kappa_{s}\pi \text{ rest frame.}$$

$$\beta: \text{ direction of } K_{s}\pi \text{ system in the } \tau \text{ rest frame.}$$

$$(\theta: \text{ direction of } K_{s}\pi \text{ system in the } \tau \text{ rest frame.}$$

$$A_{i}^{cp} = \frac{\int \int \int_{Q_{1,i}}^{Q_{2,i}^{2}} \cos\beta\cos\psi\left(\frac{d\Gamma_{\tau^{-}}}{d\omega} - \frac{d\Gamma_{\tau^{+}}}{d\omega}\right)d\omega}{\frac{1}{2}\int \int \int_{Q_{1,i}}^{Q_{2,i}^{2}}\left(\frac{d\Gamma_{\tau^{-}}}{d\omega} + \frac{d\Gamma_{\tau^{+}}}{d\omega}\right)d\omega}$$
This is an experimental observable extracting CPV term from the differential decay width.

differential decay width.

with $d\omega = dQ^2 d\cos\theta d\cos\beta$.

 $\simeq \langle \cos\beta\cos\psi\rangle_{\tau^{-}}^{i} - \langle \cos\beta\cos\psi\rangle_{\tau^{+}}^{i}$

By normalizing numbers of tau+ and tau- to be same, K⁰-K⁰ mixing does not affect this analysis.

CPV search in lepton sector@Belle (1)

Phys. Rev. Lett. 107 (2011) 131801

• 700fb⁻¹ data sample used

Basic requirement: 3-1 charged tracks, one K_S^0 (mass, flight length, etc.), π ID, leptonic decay in tag side Aug/19/2014

CPV search in lepton sector@Belle (2)

Totally, 162K $\tau^{\pm} \rightarrow K_s^{0} \pi^{\pm} \nu$ candidates are selected, respectively. Almost 20% comes from BG, mainly $\tau^{-} \rightarrow K_s^{0} K_L^{0} \pi^{-} \nu$, $K_s^{0} \pi^{-} \pi^{0} \nu$ Corrections are:

> to the detector; $O(10^{-3})$ to the F-B asymmetry; $O(10^{-4})$ $\tau \rightarrow \pi \pi \pi \nu$ is used for the calibration.

Result:

M _{Kπ} (GeV/c²)	A _{CP} (x10 ⁻³)
0.625-0.890	$7.9 \pm 3.0(stat) \pm 2.8(sys)$
0.890-1.110	$1.8 \pm 2.1(stat) \pm 1.4(sys)$
1.110-1.420	$-4.6 \pm 7.2(stat) \pm 1.7(sys)$
1.420-1.775	$-2.3\pm19.1(stat)\pm5.5(sys)$

Interpretation: $|Im(\eta_s)| < (0.012-0.026)$ at 90 %C.L. (due to the unknown strong phase)

CPV search in lepton sector@Belle (3)

The 3 Higgs Doublet Model predicts CPV in the lepton sector with complex higgs coupling constant X,Z:

Relation between η_{s} and 3HDM model parameters:

$$\eta_s \cong \frac{m_\tau m_s}{M_{H^{\pm}}^2} X^* Z$$

 $M_{\mu^{\pm}}$: mass of lightest charged Higgs in MHDM

Z : complex coupling constant btw Higgs and lepton.

X : complex coupling constant btw Higgs and down-type quark

• The result (Im(η_s)<0.026) limits the coupling:

$$|\operatorname{Im}(XZ^*)| \le 0.15 \frac{M_H^2}{(1 \text{GeV})^2}$$

400 350 300 200 150 150 100 50 0 10 20 30 40 50 60 70 80 90 100 √Im(XZ*)

m_sZ

m_xX

Aug/19/2014

IPA2014

CPV search in lepton sector@BaBar

T

Phys. Rev. D85 (2012) 031102

• Using 500fb⁻¹ of data, BaBar evaluate much simpler asymmetry:

 $A_Q = \frac{\Gamma(\tau^+ \to \pi^+ K^0_S \bar{\nu}_\tau) - \Gamma(\tau^- \to \pi^- K^0_S \nu_\tau)}{\Gamma(\tau^+ \to \pi^+ K^0_S \bar{\nu}_\tau) + \Gamma(\tau^- \to \pi^- K^0_S \nu_\tau)} \quad \begin{array}{l} A_Q = (0.33 \pm 0.01)\% \text{ in SM due to CPV} \\ \text{in } K^0 - \overline{K}^0 \text{ mixing.} \end{array}$

In this analysis, any number of π^0 is allowed in the signal decay.

- 170k $\tau^{\pm} \rightarrow K_s^{0} \pi^{\pm} (\geq 0\pi^0) v$ events are picked up, respectively, by similar selection to the Belle case. Remaining BG contents are also similar, i.e., mainly come from $\tau^- \rightarrow K_s^{0} K_L^{0} \pi^- v$.
- Finally, after the correction asymmetry is evaluated:

 $A_Q = (-0.36 \pm 0.23 \pm 0.11)\%$ 2.8 σ from SM prediction Similarly to Belle analysis, using $\tau \rightarrow \pi \pi \pi \nu$, correction is evaluated and applied.

tau EDM search

- Tau electric dipole moment search is also a kind of CPV search.
- Tau electric dipole moment should be suppressed since tau is an elementary particle.
- But, a new physics effect can enhance tau electric dipole moment. Several SUSY models predict it, for example.

tau EDM search @ Belle (1)

By using "Optimal Observable"

Phys.Lett.B 551(2003) 16

- Amplitude to produce $\tau\tau$ with tau EDM term can be written down:

$$\mathcal{M}_{prod}^{2} = \mathcal{M}_{SM}^{2} + Re(d_{\tau})\mathcal{M}_{Re}^{2} + Im(d_{\tau})\mathcal{M}_{Im}^{2}$$

$$\mathcal{M}_{SM}^{2} = \frac{e^{4}}{k_{0}^{2}}[k_{0}^{2} + m_{\tau}^{2} + |k^{2}|(\hat{k}\hat{p})^{2} - S_{+}S_{-}|k|^{2}(1 - ((\hat{k}\hat{p})^{2})]$$

$$+2(\hat{k}S_{+})(\hat{k}S_{-})(|k|^{2} + (k_{0} - m_{\tau})^{2}(\hat{k}\hat{p})^{2})$$

$$-2k_{0}(k_{0} - m_{\tau})(\hat{k}\hat{p})((\hat{k}S_{+})(\hat{p}S_{-}) + (\hat{k}S_{+})(\hat{p}S_{-}))$$

$$S_{\pm}:\tau^{\pm} \text{ spin vector}$$

$$+2k_{0}^{2}(\hat{p}S_{+})(\hat{p}S_{-})$$

$$\mathcal{M}_{Re}^{2} = 4\frac{e^{3}}{k_{0}}|k| \left[-(m_{\tau} + (k_{0} - m_{\tau})(\hat{k} \cdot \hat{p})^{2})(S_{+} \times S_{-}) \cdot \hat{k} + k_{0}(\hat{k} \cdot \hat{p})(S_{+} \times S_{-}) \cdot \hat{p} \right],$$

$$\mathcal{M}_{Re}^{2} = 4\frac{e^{3}}{k_{0}}|k| \left[-(m_{\tau} + (k_{0} - m_{\tau})(\hat{k} \cdot \hat{p})^{2})(S_{+} - S_{-}) \cdot \hat{k} + k_{0}(\hat{k} \cdot \hat{p})(S_{+} - S_{-}) \cdot \hat{p} \right],$$

$$\mathcal{M}_{Re}^{2} = 4\frac{e^{3}}{k_{0}}|k| \left[-(m_{\tau} + (k_{0} - m_{\tau})(\hat{k} \cdot \hat{p})^{2})(S_{+} - S_{-}) \cdot \hat{k} + k_{0}(\hat{k} \cdot \hat{p})(S_{+} - S_{-}) \cdot \hat{p} \right],$$

$$\mathcal{M}_{Re}^{2} = 4\frac{e^{3}}{k_{0}}|k| \left[-(m_{\tau} + (k_{0} - m_{\tau})(\hat{k} \cdot \hat{p})^{2})(S_{+} - S_{-}) \cdot \hat{k} + k_{0}(\hat{k} \cdot \hat{p})(S_{+} - S_{-}) \cdot \hat{p} \right],$$

$$\mathcal{M}_{Re}^{2} = 4\frac{e^{3}}{M_{SM}^{2}}|k| \left[-(m_{\tau} + (k_{0} - m_{\tau})(\hat{k} \cdot \hat{p})^{2})(S_{+} - S_{-}) \cdot \hat{k} + k_{0}(\hat{k} \cdot \hat{p})(S_{+} - S_{-}) \cdot \hat{p} \right],$$

$$\mathcal{M}_{Re}^{2} = 4\frac{e^{3}}{M_{SM}^{2}}|k| \left[-(m_{\tau} + (k_{0} - m_{\tau})(\hat{k} \cdot \hat{p})^{2}(S_{+} - S_{-}) \cdot \hat{k} + k_{0}(\hat{k} \cdot \hat{p})(S_{+} - S_{-}) \cdot \hat{p} \right],$$

$$\mathcal{M}_{Re}^{2} = 4\frac{e^{3}}{M_{SM}^{2}}|k| \left[-(m_{\tau} + (k_{0} - m_{\tau})(\hat{k} \cdot \hat{p})^{2}(S_{+} - S_{-}) \cdot \hat{k} + k_{0}(\hat{k} \cdot \hat{p})(S_{+} - S_{-}) \cdot \hat{p} \right],$$

$$\mathcal{M}_{Re}^{2} = 4\frac{e^{3}}{M_{SM}^{2}}|k| \left[-(m_{\tau} + (k_{0} - m_{\tau})(\hat{k} \cdot \hat{p})^{2}(S_{+} - S_{-}) \cdot \hat{k} + k_{0}(\hat{k} \cdot \hat{p})(S_{+} - S_{-}) \cdot \hat{p} \right],$$

$$\mathcal{M}_{Re}^{2} = 4\frac{e^{3}}{M_{SM}^{2}}|k| \left[-(m_{\tau} + (k_{0} - m_{\tau})(\hat{k} \cdot \hat{p})^{2}(S_{+} - S_{-}) \cdot \hat{k} + k_{0}(\hat{k} \cdot \hat{p})(S_{+} - S_{-}) \cdot \hat{p} \right],$$

$$\mathcal{M}_{Re}^{2} = 4\frac{e^{3}}{M_{SM}^{2}}|k| \left[-(m_{\tau} + (k_{0} - m_{\tau})(\hat{k} \cdot \hat{p})^{2}(S_{+} - S_{-}) \cdot \hat{k} + k_{0}(\hat{k} \cdot \hat{p})(S_{+} - S_{-}) \cdot \hat{p} \right],$$

$$\mathcal{M}_{Re}^{2} = 4\frac{e^{3}}{M_{SM}^{2}}|k| \left[-(m$$

8

tau EDM search @ Belle (2)

• 30fb⁻¹, ee $\rightarrow \tau \tau / \tau \rightarrow evv, \mu vv, \pi v, \rho v$

where, to avoid bhabha and di-muon, $\tau \rightarrow evv/\tau \rightarrow evv, \tau \rightarrow \mu vv/\tau \rightarrow \mu vv$ have not been taken into account.

tau EDM search @ Belle (3)

 $|Re(d_{\tau})| < 4.0 \times 10^{-17} e \,\mathrm{cm}, \ |Im(d_{\tau})| < 2.2 \times 10^{-17} e \,\mathrm{cm}, \ @95\%$ CL

full data analysis is on-going and will finish soon.

TAU LEPTON FLAVOR VIOLATION

Tau Lepton Flavor Violation

 A charged lepton flavor violation (LFV) has not yet been observed in any leptons and is also strongly suppressed in SM even if neutrino oscillation is taken into account:

$$Br(\tau \to \mu\gamma)_{SM} \propto \left(\frac{\delta m_{\nu}^2}{m_W^2}\right)^2 < 10^{-54}$$
(Phys. Rev. D16 (1977) 1444)

This is impossible to observe it experimentally. Therefore, tau LFV can be a clear signature of a new physics. (Similarly, muon LFV)

- Various models beyond SM predict it as largely as the current experimental sensitivity can reach there.
- Tau provides various kinds of lepton-flavor-violating decays since hadronic decays are allowed. (cf. muon)
 - Various decay modes tell us what model is favored.

 W^{-}

 V_{τ}

Comparison between NP models

Ratios of tau LFV decay BF allow to discriminate between new physics models.

	SUSY+GUT	Higgs	Little Higgs	non-universal	
	(SUSY+Seesaw)	mediated		Z' boson	
$\left(\frac{\tau \to \mu\mu\mu}{\tau \to \mu\gamma}\right)$	~2×10 ⁻³	0.06~0.1	0.4~2.3	~16	
$\left(\frac{\tau \to \mu e e}{\tau \to \mu \gamma}\right)$	~1 × 10 ⁻²	~1 × 10 ⁻²	0.3~1.6	~16	
Br(τ→μγ) @Max	<10-7	<10 ⁻¹⁰	<10 ⁻¹⁰	<10 ⁻⁹	
(JHEP 0705, 013(2007), PLB54 252 (2002))					
Favorite modes $\tau \rightarrow \mu \gamma$ $\tau \rightarrow \mu \mu \mu, \mu ee$					

Analysis method of tau LFV at B-factory

Since signal decay is neutrinoless, signal tau can be reconstructed, differently from SM decay.

Signal Extraction

Result for $\tau \rightarrow \mu \gamma$ search @ Belle/BaBar

Belle: data: 545 fb⁻¹ (PLB 666, 16 (2008))

- 94 events are found while (88.4±7.4) BG events are expected in 5σ region and the detection eff. is 6.1%.
- Upper Limits are evaluated by 2d UEML fit on M- [↓]
 ∆E plane.
 - Expected UL: 7.8x10⁻⁸ @90%CL
 - Obtained UL: 4.5x10⁻⁸ @90%CL

Remaining dominant BG is $ee \rightarrow \tau\tau(\rightarrow \mu\nu\nu)\gamma$ and this limits the sensitivity... (PRL104,021802(2010))

BaBar: Data: 482M τ pairs (including Y(2,3S) data)

Decay modes	2σ signal ellipse		ε	UL (× 10^{-8})	
	obs	\exp	(%)	obs	\exp
$\tau^{\pm} \to \mu^{\pm} \gamma$	2	$3.6 {\pm} 0.7$	6.1 ± 0.5	4.4	8.2

At Belle, with the full data sample, updated analysis is on-going.

IPA2014

Result for $\tau \rightarrow 3$ leptons search @ Belle

BELLE

Data: 782fb⁻¹

- No event is found in the signal region.
- <u>Almost BG free</u>
 - Expected # of BG: 0.01-0.21
 - good lepton ID
- Br<(1.5-2.7)x10⁻⁸ at 90%CL.
 - →most sensitive results

Phys.Lett.B 687,139 (2010)

Result for $\tau \rightarrow 3$ leptons search @ BaBar

Data:477fb⁻¹

Improve lepton ID eff.

- μ: 66%**→**77%
- e: 89% → 91%
 →Better BG rejection
 no events in signal
 region for all modes
 Br<(1.8-3.3)x10⁻⁸
 @90%CL

Phys. Rev. D 81 (2010) 111101(R)

Channel	Efficiency (%)	N_{bgd}	Exp. UL	N_{obs}	UL
$e^+e^-e^+$	8.6 ± 0.2	0.12 ± 0.02	$3.4 imes 10^{-8}$	0	$2.9 imes 10^{-8}$
$e^+e^-\mu^+$	8.8 ± 0.5	0.64 ± 0.19	$3.7 imes 10^{-8}$	0	2.2×10^{-8}
$e^+e^+\mu^-$	12.6 ± 0.7	0.34 ± 0.12	$2.2 imes 10^{-8}$	0	$1.8 imes 10^{-8}$
$e^+\mu^-\mu^+$	6.4 ± 0.4	0.54 ± 0.14	$4.6 imes 10^{-8}$	0	$3.2 imes 10^{-8}$
$e^-\mu^+\mu^+$	10.2 ± 0.6	0.03 ± 0.02	$2.8 imes 10^{-8}$	0	$2.6 imes 10^{-8}$
$\mu^+\mu^-\mu^+$	6.6 ± 0.6	0.44 ± 0.17	$4.0 imes 10^{-8}$	0	$3.3 imes 10^{-8}$

Summary of recent tau LFV searches

48 tau LFV modes have been searched for at B-factories and obtained 100x more sensitive results than CLEO's. Recently LHCb also made the search for $\mu\mu\mu$, etc. The results are comparable to the B-factories'.

Aug/19/2014

IPA2014

NEAR FUTURE EXPERIMENT

SuperKEKB/Belle II KL and muon detector: Resistive Plate Counter (barrel) Nikko + 3.6A(LER) Tsukuba IR HER RF(Superconducting) Scintillator + WLSF + MPPC (end-caps) Belle II LER Wiggler & Chicane **EM Calorimeter:** CsI(TI), waveform sampling (barrel) 2.6AIHER Pure Csl + waveform sampling (end-caps) Circumference - 3km Particle Identification Time-of-Propagation counter (barrel) electron (7GeV) Prox. focusing Aerogel RICH (fwd) Beryllium beam pipe Full **Injection Point** HER RF(ARES) & Wiggler 2cm diameter LER RF(ARES) **LER Wiggler** Vertex Detector Injector Linac 2 layers DEPFET + 4 layers DSSD positron (4GeV) e+ Damping Ring Central Drift Chamber He(50%):C2H6(50%), Small cells, long lever arm, fast electronics KEKB superKEKB SVD: 4 DSSD lyrs \rightarrow 2 DEPFET lyrs + 4 DSSD lyrs Vertical β function: 5.9 mm \rightarrow 0.27/0.30 mm (x20) CDC: small cell, long lever arm $1.7/1.4 \text{ A} \rightarrow 3.6/2.6 \text{ A} (\text{x2})$ Beam current: ACC+TOF → TOP+A-RICH ECL: waveform sampling, pure CsI for end-caps \rightarrow L = 2x10³⁴ cm⁻²s⁻¹ \rightarrow 8x10³⁵ cm⁻²s⁻¹ (x40) KLM: RPC \rightarrow Scintillator +SiPM (end-caps)

Expected integrated luminosity on SuperKEB/Belle II

IPA2014

Future prospect on τLFV @ Belle II

- Sensitivity will be... BG free: $\infty 1/(\text{no.of }\tau)$ BG non-free: $\infty 1/V$ (no.of τ)
- BG amount for each mode $\tau \rightarrow \mu \gamma$: BG non-free (rich) $\tau \rightarrow \mu \mu \mu$: BG free \rightarrow expected: B(µµµ)~O(10⁻¹⁰) B(μγ)~O(10⁻⁹)

Sensitivity will be better than expected.

Summary

- Tau lepton is a good probe to NP phenomena such as tau LFV and CPV in lepton sector.
- B-factories provide us the huge data sample of tau (O(10⁹)) and various analyses to search for NP have been performed.
- CPV search in tau decay having K_s⁰ has been performed:
 - Belle's result is 10x more sensitive than CLEO's.
 - BaBar's result is 2.8σ away from SM prediction.
- tau EDM has also been measured. Still zero-consistent result:
 - $|\operatorname{Re}(d_{\tau})| < 4.0 \times 10^{-17}$, $|\operatorname{Im}(d_{\tau})| < 2.2 \times 10^{-17}$ @95%CL
 - New analysis is on-going and will finish soon.
- 48 tau LFV modes have been searched at B-factories and 100x sensitive results have been obtained than CLEO's.
 - The sensitivity is O(10⁻⁹). LHCb can search for some modes and the current sensitivity is comparable to B-factories'.
 - With Belle's full data sample, $\tau \rightarrow \mu \gamma / e \gamma$ analyses is on-going and will finish soon.
- Next generation B-factory, that is superKEKB/Belle II, will have 50x larger data sample. NP searches using tau will continue and more sensitive result will be obtained in the future.

$\tau \rightarrow \mu \mu \mu$ at LHCb

- used 8x10¹⁰ τs, in 1fb⁻¹ data sample at Vs=7 TeV collected in 2011
 - 80% of τs comes from $D_s \rightarrow \tau v$
 - There is no way for B-factory-like τ -tag since τ does not come from τ -pair production.
 - More BG is expected than that at B-factory
- D_s → $\phi(\mu\mu)\pi$ is also analyzed as a "reference".
 - Mass is very close to τ 's and this process is also 3-prong decay.
 - By counting no.of D_s , no.of τ is evaluated.
- Used 3-prong likelihood,3μ-PID likelihood and M(μμμ)to evaluate τ→μμμ likelihood.

signal likelihoods

combined signal distribution

- events distributed over 25 likelihood bins
- background estimate from mass sidebands

1 fb⁻¹ LHCb-CONF-2012-015

- 11% signal efficiency
- 21 % signal efficiency
- for illustration: high likelihood range shown

FPCP 2012

Aug/19/2014

Paul Seyfert (Heidelberg University)

IPA2014

LFV and LNV

28/31

LHCD

observed events

extracted limit

result (preliminary)

Private estimation for the future prospect of $\tau \rightarrow \mu\mu\mu$ at LHCb

- Very near future: $1fb^{-1} \rightarrow 3fb^{-1}$
 - 8TeV 2fb⁻¹ data sample will be added since that has already obtained.
 - Since σ (cc) at LHC is almost proportional to V^s , no. of τ approximately become 3.3 times larger.
 - Since BG is large, around √3.3 times more sensitivity will be obtained,
 i.e.B<4x10⁻⁸@90%
- Finally: 50fb⁻¹ (2030? Anyway after 2020 LS2)
 - At 14TeV,100 times more τ will be obtained.
 - They try to improve the trigger eff.: twice better
 - Tottaly, 15 times more sensitive \rightarrow B<6x10⁻⁹
- $\tau \rightarrow \mu \phi (\rightarrow KK), \tau \rightarrow \mu K^* (\rightarrow K\pi)$ searches are also possible. $(\tau \rightarrow \mu \mu p)$ has been done in the current one)