

Results from T2K

IPA 2014, 18th August 2014

Martin Haigh, University of Warwick for the T2K Collaboration

Flavour states Mass states $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} \qquad \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$

Flavour states ≠ Mass states

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{+i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Flavour states ≠ Mass states

Flavour states ≠ Mass states

5

State of play and motivation

Many oscillation parameters already measured!

θ ₁₂ ~ 34°	Solar+KamLAND
θ ₂₃ ~ 45°	Super-K, MINOS, T2K
θ ₁₃ ~ 9°	Daya Bay, RENO, Double CHOOZ (T2K in appearance channel)
$\Delta m^2_{\odot} \sim 7.65 \text{ x } 10^{-5} \text{ eV}^2$	Solar+KamLAND
$ \Delta m^2_{atm} \sim 2.4 \times 10^{-3} \text{ eV}^2$	MINOS, T2K

- Still unknown:
 - Sign of Δm_{atm}^2 (mass hierarchy), two possibilities:
 - Normal hierarchy (NH): m₃ > m₁,m₂
 - Inverted hierarchy (IH): m₃ < m₁,m₂
 - Octant of θ_{23} , i.e. $\theta_{23} < 45^{\circ}$, $\theta_{23} > 45^{\circ}$, maximal!?
 - CP violating phase δ .

- Non-zero CP violation in the lepton sector means leptogenesis is a potential source of matter-antimatter asymmetry!
- T2K still refining measurements of known parameters and also has enough sensitivity to give hints on mass hierarchy and δ . Determination of octant depends on true θ_{23} .

T2K Experiment

- Long-baseline experiment in Japan.
 - v_{μ} beam produced at J-PARC on East coast.
 - Far detector is the Super-Kamiokande Water Cherenkov detector.
 - Also a suite of near detectors.

- Novel feature off-axis beam to reduce high-energy tail
 - Narrow-band beam around oscillation maximum
 - Feed-down from mis-reconstructed DIS/resonance events at SK into analysis region reduced.

Super-K detector

- Located in Mozumi mine with 1km rock overburden (2700 m.w.e.)
- 22.5 kt fiducial mass water Cherenkov detector
 - Inner detector ~ 11000 20-inch PMTs
 - Outer veto ~ 1900 8-inch PMTs
- Excellent μ/e separation from ring shape/opening angle
- New for T2K:
 - 100% livetime DAQ system
 - Improved algorithm for NC-π⁰ rejection

Near detectors

- "ND280" detector
 - Same off-axis angle as Super-K => many shared systematics cancel between near and far detectors
 - FGD plastic scintillator neutrino targets, one fully active and one with water layers
 - Gas TPCs for momentum measurement and PID
 - Subdetector optimised for π^0 detection at upstream end of detector
 - Surrounded by ECAL and MRDs, with 0.2T magnet

- "INGRID" detector
 - On-axis beam monitor measure flux and beam profile
 - I3 modules in a "plus" configuration centred on beam axis, with two diagonal modules
 - Each module is a 1m³ iron-plastic scintillator sampling calorimeter

Delivered flux

- Flux from 6.6x10²⁰ Protons on Target (POT) used in current analyses (Runs 1-4).
- Total POT to date:
 - 6.88×10^{20} POT for ν beam.
 - 0.51×10^{20} POT for \bar{v} beam first \bar{v} beam taken this summer!

1st event of $\bar{\nu}$ beam!

- 1 muon-like ring.
- 2 fuzzy rings with invariant mass 132.6 MeV/c².
- Looks like μ+π⁰.

Neutrino interactions at T2K

- Charged-current (CC) events neutrino in, same-flavour charged lepton out.
- Charged-current quasi-elastic (CCQE)

 $v_{l} + n \rightarrow l^{-} + p$

 Charged-current resonant pion production

 $v_l + p \rightarrow l^{\scriptscriptstyle -} + N^* \rightarrow l^{\scriptscriptstyle -} + N' + \pi$

- Some deep inelastic scattering, but not so important at T2K energies
- Also get neutral-current (NC) versions of these interactions

ND280 analysis

- v_{μ} CC selection:
 - Vertex in FGD1
 - highest-momentum negative track in TPC2 is muon-like
- Identify pions in events:
 - **a** π^+/π^- from right-charged track in TPC
 - π⁺ from Michel electron in FGD1
 - **a** π^0 from electron-compatible track in TPC2
- Split events according to pion content and fit distributions with flux and x-sec systematics floating

ND280 flux and cross-section constraints

- ND280 data are fitted to flux and crosssection parameters based on external constraints and nominal beam MC.
- Significant reduction in Super-K systematics, particularly x-sec.

Parameter	Prior to ND280 Constraint	After ND280 Constraint
M _A ^{QE} (GeV)	1.21 ± 0.45	1.240 ± 0.072
M _A ^{RES} (GeV)	1.41 ± 0.22	0.965 ± 0.068
CCQE Norm. E _v <1.5 GeV	1.00 ± 0.11	0.966 ± 0.076
CCQE Norm. $1.5 < E_v < 3.5 \text{ GeV}$	1.00 ± 0.30	0.93 ± 0.10
CCQE Norm. E _v >3.5 GeV	1.00 ± 0.30	0.85 ± 0.11
CC1 π Norm. E _v <2.5 GeV	1.15 ± 0.32	1.26 ± 0.16
CC1 π Norm. E _v >2.5 GeV	1.00 ± 0.40	1.12 ± 0.17
NC1π ^o Norm.	0.96 ± 0.33	1.14 ± 0.25

ND280 constraints on SK event rates

 Big improvement in event rate predictions from ND280 fit!

	ν _e Prediction (Events)	Error from Constrained Parameters
No ND280 Constraint	22.6	26.5%
ND280 Constraint	20.4	3.0%

Super-K v_e selection

- Cuts used for T2K analysis:
 - Fully contained fiducial volume (FCFV) event
 - Single ring e-like event
 - Visible energy > 100 MeV
 - No Michel electrons
 - 0<E^{rec} < 1250 MeV</p>
 - π⁰ likelihood cut

v_e appearance results (Phys Rev. Lett. 112, 061802 (2014))

- 28 events observed
- Background for $\theta_{13} = 0$ of (4.92±0.55) events
- $\theta_{13} = 0$ excluded at 7.3 σ !

ν_μ disappearance results (Phys. Rev. Lett. 112, 181801 (2014))

- 3-flavour fit using θ_{13} from reactor measurements
- World-leading measurement of atmospheric mixing angle θ₂₃!
- Still no hint of θ_{23} octant

Parameter	Best-fit Value
sin ² (θ ₂₃) [NH]	$0.514^{+0.055}$ -0.056
Δm ² ₃₂ (x10 ⁻³ eV ²) [NH]	2.51 ± 0.10
sin ² (θ ₂₃) [IH]	0.511 ± 0.055
Δm ² ₁₃ (x10 ⁻³ eV ²) [IH]	2.48 ± 0.10

Joint oscillation fit

- Simultaneous likelihood fit to both v_{μ} and v_{e} spectra.
- Also include reactor constraint as in PDG13 θ_{13} from these measurements smaller than for T2K.
- Combined results show weak preference for NH, $\delta \sim -0.5 \pi$.
- Solution Obviously not significant, but gives an intriguing hint that nature may have given us a "lucky" δ .

Future sensitivity

- Assume case that is weakly preferred by existing data $(\sin^2 2\theta_{13} = 0.1 \text{ from reactors, NH}, \delta = -0.5 \pi)$. Obviously this case is also lucky since CP violation is large.
- Plots shown are for 7.8x10²¹ POT T2K running, and anticipated final reactor constraint.
- Sensitivity maximised for 50% ν , 50% $\bar{\nu}$ running.

v_e CC-inclusive cross-section on Carbon (arXiv:1407.7389)

- Select v_e events in the ND280 FGD1:
 - Negative electron-like track in TPC2, vertex in FGD1
 - Events with positive track are subject to invariant mass cut
 - Veto activity upstream in the detector
- First differential v_e cross-section measurement at these energies!
- Good agreement with generators and Gargamelle.
- Differential cross-section plots available in the paper.

v_{μ} CC-inclusive cross-section on Carbon

(PRD 87, 092003 (2013))

- Muon-like events in ND280 selected.
 - Unfold reconstructed p_{μ} sin θ_{μ} distributions to get estimate of true kinematic distributions.
 - Get double-differential and total cross-sections integrated over beam flux.

NCQE cross-section from de-excitation γs (arXiv:1403.3140)

- First measurement of NCQE neutrino interaction crosssection on Oxygen, using Super-K.
- Cuts:
 - In beam timing window, no high-energy preceding event
 - 4 MeV < E < 30 MeV, observed light has large Cherenkov angle (exclude low-energy muons)
 - Other standard cuts for removing non-beam background.
- Beam data ideal for this measurement since beam window cut limits effect of natural radioactivity.

Summary and outlook

- T2K has now collected over 7x10²⁰ POT of data.
 - Antineutrino running demonstrated during recent run period.
- T2K is continuing to produce exciting results:
 - 7.3 σ exclusion of $\theta_{13} = 0$ in v_e appearance channel.
 - World's most precise measurement of θ_{23} .
 - Neutrino cross-section measurements being made in O(1GeV) range.
- Will continue to combine T2K data with constraints from NOvA and reactors to improve constraints on MH and CP violation.
- Only at 8% of design luminosity, and antineutrino running is just starting.
 - Lots more data and exciting results still to come!

Backup

v_e CC-inclusive differential cross-sections

