Constraints on Dark Forces from the B Factories and Low-Energy Experiments

Abi Soffer

Tel Aviv University Representing the BABAR collaboration IPA, Queen Mary, University of London, August 2014

The B factories

B-factory data samples

> 1 ab⁻¹ On resonance: $Y(5S): 121 \text{ fb}^{-1}$ $Y(4S): 711 \text{ fb}^{-1}, 657 \text{ M}$ $Y(3S): 3 \text{ fb}^{-1}$ $Y(2S): 25 \text{ fb}^{-1}$ $Y(1S): 6 \text{ fb}^{-1}$ Off reson./scan: $\sim 100 \text{ fb}^{-1}$

513.7 \pm 1.8 fb⁻¹ On resonance: *Y*(4S): 424 fb⁻¹, 471 M *Y*(3S): 28 fb⁻¹, 122 M *Y*(2S): 14 fb⁻¹, 99 M Off resonance:

 48 fb^{-1}

CLEO: *Y*(1S): 1.1 fb^{-1,} 22 M

Dark forces

- We often think of DM as one particle the WIMP
 E.g., the SUSY LSP
- But DM may involve rich phenomenology, an entire "dark sector"
 - Why should the SM particles, which account for only $\sim 1/5$ of the matter in the universe, have all the fun?
- Possible "dark forces" serve as portals between the SM sector and the dark sector → interesting measurements

The dark photon

See Mitesh's talk

- Postulate U(1) gauge interaction in dark sector, with massive "dark photon" *A*′
- Effective Lagrangian mixes the dark U(1) and SM photon:

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{m_{A'}^2}{2} A'_{\mu} A'^{\mu} - \frac{\mathcal{E}}{2} F'_{\mu\nu} F^{\mu\nu}$$
SM EM field
Dark U(1) field
 e^+
 \mathcal{K}_{e^-}
 f
 $(a) 10 \text{ GeV: } \sigma(e^+e^- \rightarrow \gamma\gamma) \approx 3 \text{ nb}$
 f
 $(a) 10 \text{ GeV: } \sigma(e^+e^- \rightarrow \gamma\gamma) \approx 3 \text{ nb}$

Recent interest

PRL 110, 141102 (2013) Nature 458, 607 (2009) PRL 108, 011103 (2012).

• Excess of high-energy cosmic positrons interpreted as annihilations of ~TeV DM:

PRD 79, 015014 (2009)

$$\chi\chi \to A'A' \to (e^+e^-)(e^+e^-)$$

- Lack of antiproton excess $\rightarrow m_{A'} < \text{few GeV}$
- The excess may very well have astrophysical sources
- But it has inspired research on GeV-scale new physics we hadn't thought of previously.

Constraints from g-2 & hydrogen transition frequency

PRD 86, 095029 (2012)

 $\mu\,$ g–2 ring en route to FNAL

	E_0		$L_{ m sh}$	$L_{ m dec}$		
Experiment	[GeV]	electrons	[m]	[m]	$N_{ m obs}$	$N_{95\%\mathrm{up}}$
E141 [47]	9	2×10^{15}	0.12	35	1126^{+1312}_{-1126}	3419
E137 [48]	20	$1.87 imes 10^{20}$	179	204	0	3
E774 [<mark>49</mark>]	275	5.2×10^{9}	0.3	2	0^{+9}_{-0}	18
KEK [39]	2.5	1.69×10^{17}	2.4	2.2	0	3
Orsay [40]	1.6	2×10^{16}	1	2	0	3

Proton fixed target + supernova cooling

LSND

U70

CHARM

BABAR: Invariant mass distributions

arxiv:1406.2980

Signal search

- Fit for signal peak + background (3rd or 4th order polynomial) in intervals 20 × wider than signal
- Calculate cross section for each fit
- Statistical significance ~ Gaussian

Model constraints

Model constraints + future outlook

Dark Higgsstrahlung

Model-parameter limits

16

The dark Higgs portal

• A scalar that mixes with the SM Higgs, studied in various scenarios – e.g., JHEP 1402, 123 (2014); PLB 727, 506 (2013)

$$\mathcal{L} = \mathcal{L}_{\rm SM} - \frac{ym_f}{v}\phi\bar{f}f - \frac{1}{2}\kappa\phi\bar{\chi}\chi$$

• Scalar produced in Y or B decays, decays to SM or dark fermions:

• Same topology as *BABAR*'s search for NMSSM CP-odd Higgs A⁰

Searches for $Y \rightarrow \gamma A^0$

$$\frac{\mathcal{B}(\Upsilon(nS) \to \gamma A^0)}{\mathcal{B}(\Upsilon(nS) \to l^+ l^-)} = \frac{g_b^2 G_F m_b^2}{\sqrt{2}\pi\alpha} \mathcal{F}_{QCD} \left(1 - \frac{m_{A^0}^2}{m_{\Upsilon(nS)}^2} \right)$$

Radiative Decays of Y(nS) Signature: monochromatic photon

 $A^{0} \rightarrow \mu^{+}\mu^{-}$, PRL**103**, 081803 (2009) $A^{0} \rightarrow \tau^{+}\tau^{-}$, PRL**103**, 181801 (2009) $A^{0} \rightarrow$ hadrons, PRL**107**, 221803 (2011) $A^{0} \rightarrow$ invisible, arXiv:0808.0017

BABAR

CLEO 1S $A^0 \rightarrow \mu^+ \mu^-$, $\tau^+ \tau^-$, PRL 101, 151802 (2008) BESIII J/ ψ $A^0 \rightarrow \mu^+ \mu^-$, PRL 101, 151802 (2008) Additional constraints: $\Upsilon(1S)$ from $\Upsilon(2S,3S) \rightarrow \pi^+\pi^-\Upsilon(1S)$ transitions Signature: two low-momentum pions, recoiling against $\Upsilon(1S)$

 $A^0 \rightarrow \mu^+\mu^-$, PRD 87, 031102 (2013) $A^0 \rightarrow \tau^+\tau^-$, PRD 88, 071102 (2013) $A^0 \rightarrow$ hadrons, PRD 82, 0317019R (2013) $A^0 \rightarrow$ invisible (light dark matter), PRL107, 021804 (2011)

Summary of *BABAR* $Y \rightarrow \gamma A^0$ results

Constraints from $B \rightarrow K^{(*)} \chi \overline{\chi} \& Y \rightarrow \gamma \chi \overline{\chi}$

PRD 89, 083513 (2014)

$$\mathcal{L} = \partial_{\mu} S^{\dagger} \partial^{\mu} S + \mu^{2} S^{\dagger} S - \lambda (S^{\dagger} S)^{2} - g_{\theta} (S^{\dagger} S) (\Phi^{\dagger} \Phi) + \mathcal{L}_{\rm SM}$$

Conclusions

- Great interest in exploring a GeV-scale dark sector
- B factories well suited for this purpose
 - "Right" energy, high luminosity
 - Heavy flavors sensitive to mass-dependent couplings
 - Dominate many of the constraints in this mass range
- Have yet to use all channels and data
- Improved constraints from, e.g., LHCb, Belle-II, HPS, SHiP

SUSY? Mini black holes? Dark forces? ...?

22 922 922 920

1001

Hit

南日

THE A DEST

508 908

NEET SHEET SHEET | SHEET S

XXXXXXXXX

MALAN

XXXXXXX

H

BAR

2

SUSY? Mini black holes? Dark forces? ...?

***** **BBB**

THE

南日

1 3252 SEE 5654 SEE

XXXXXXXXX

VALA AL

翩

9

Backup slides

SHiP limits (from Mitesh's talk)