

SHiP: Search for Hidden Particles

Mitesh Patel (Imperial College London) Interplay between Particle and Astrophysics 2014 21st August 2014

On behalf of:

W. Bonivento^{1,2}, A. Boyarsky³, H. Dijkstra², U. Egede⁴, M. Ferro-Luzzi², B. Goddard², A. Golutvin⁴,

D. Gorbunov⁵, R. Jacobsson², J. Panman², M. Patel⁴, O. Ruchayskiy⁶, T. Ruf², N. Serra⁷, M. Shaposhnikov⁶, D. Treille^{2 (‡)}

¹Sezione INFN di Cagliari, Cagliari, Italy

²European Organization for Nuclear Research (CERN), Geneva, Switzerland

³Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden, The Netherlands

⁴Imperial College London, London, United Kingdom

⁵Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia

⁶Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

⁷Physik-Institut, Universität Zürich, Zürich, Switzerland

 $^{(\ddagger)}$ retired

(CERN-SPSC-2013-024 / SPSC-EOI-010 / arXiv:1310.1762)

Outline

- The physics landscape
- Hidden sector theories the neutrino minimal Standard Model
- Design of a new beam-dump experiment
- Sensitivity and future plans

The triumph of the Standard Model

- Boson consistent with the SM-Higgs has been found!
- ATLAS : M_H=125.5 ± 0.2 (stat) ^{+0.5}_{-0.6} (syst) GeV
- CMS: M_H=125.7 ± 0.3 (stat) ± 0.3 (syst) GeV

The triumph of the Standard Model

- Mass value important for the stability of the vacuum:
 - $M_H < 175 \text{ GeV} \rightarrow SM$ weakly coupled up to the Plank energies !
 - $M_H > 111 \text{ GeV} \rightarrow \text{EW}$ vacuum is stable or metastable with a lifetime greatly exceeding the age of our Universe (Espinosa *et al.*)

- But we still have a number of significant problems
 - Theory : radiative corrections to Higgs mass \rightarrow fine-tuning
 - Experiment: Matter anti-matter asymmetry in the Universe, neutrino masses and oscillations, non-baryonic dark matter

Unfortunately...

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Moriond 2014 Madal

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

Poforonco

	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫L dt[fl	b ⁻¹]	Mass limit	•	Reference
Inclusive Searches	$\begin{array}{l} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \tilde{qq}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^0 \\ \tilde{gs}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^1 \\ \tilde{gs}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^1 \rightarrow q q W^{\pm} \tilde{\chi}_{1}^0 \\ \tilde{gs}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^1 \rightarrow q q W^{\pm} \tilde{\chi}_{1}^0 \\ GMSB (\tilde{\ell} NLSP) \\ GMSB (\tilde{\ell} NLSP) \\ GGM (bino NLSP) \\ GGM (bino NLSP) \\ GGM (higgsino bino NLSP) \\ GGM (higgsino NLSP) \\ GGM (higgsino NLSP) \\ GGN Gavitino LSP \end{array}$	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 3-6 jets 3-6 jets 0-3 jets 0-3 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 20.3 4.8 4.8 5.8 10.5	$ \vec{q}, \vec{k} \\ \vec{g} \\ \vec$	1.7 T 1.2 TeV 1.1 TeV 1.1 TeV 1.3 TeV 1.3 TeV 1.18 TeV 1.12 TeV 1.12 TeV 1.24 TeV 1.24 TeV 1.28 TeV 1.28 TeV 619 GeV 900 GeV 690 GeV 690 GeV		ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-089 ATLAS-CONF-2013-089 ATLAS-CONF-2013-026 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \tilde{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 <i>e</i> , µ 0-1 <i>e</i> , µ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	255 255 255 255	1.2 TeV 1.1 TeV 1.34 TeV 1.3 TeV	m($\tilde{\chi}_1^0$)<600 GeV m($\tilde{\chi}_1^0$) <350 GeV m($\tilde{\chi}_1^0$)<400 GeV m($\tilde{\chi}_1^0$)<300 GeV	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$ \begin{array}{l} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{+} \\ \tilde{r}_{1}\tilde{r}_{1}(\text{light}), \tilde{r}_{1} \rightarrow b\tilde{\chi}_{1}^{+} \\ \tilde{r}_{1}\tilde{r}_{1}(\text{light}), \tilde{r}_{1} \rightarrow Wb\tilde{\chi}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1}(\text{medium}), \tilde{r}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1}(\text{medium}), \tilde{r}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1}(\text{neavy}), \tilde{r}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1}(\text{neavy}), \tilde{r}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1}(\text{neatural GMSB}) \\ \tilde{r}_{2}\tilde{r}_{2}, \tilde{r}_{2} \rightarrow \tilde{t}_{1} + Z \end{array} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1.2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b nono-jet/c-1 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.3 20.3		100-620 GeV 275-430 GeV 110-167 GeV 130-210 GeV 215-530 GeV 200-610 GeV 320-660 GeV 90-200 GeV 150-580 GeV 290-600 GeV	$\begin{split} & \mathfrak{m}(\tilde{t}_{1}^{0}){<}90\text{GeV} \\ & \mathfrak{m}(\tilde{t}_{1}^{0}){=}2\mathfrak{m}(\tilde{t}_{1}^{0}) \\ & \mathfrak{m}(\tilde{t}_{1}^{0}){=}55\text{GeV} \\ & \mathfrak{m}(\tilde{t}_{1}^{0}){=}55\text{GeV} \\ & \mathfrak{m}(\tilde{t}_{1}^{0}){=}1\text{GeV} \\ & \mathfrak{m}(\tilde{t}_{1}^{0}){=}1\text{GeV} \\ & \mathfrak{m}(\tilde{t}_{1}^{0}){=}200\text{GeV}, \mathfrak{m}(\tilde{t}_{1}^{1}){-}\mathfrak{m}(\tilde{t}_{1}^{0}){=}5\text{GeV} \\ & \mathfrak{m}(\tilde{t}_{1}^{0}){=}0\text{GeV} \\ & \mathfrak{m}(\tilde{t}_{1}^{0}){=}0\text{GeV} \\ & \mathfrak{m}(\tilde{t}_{1}^{0}){=}0\text{GeV} \\ & \mathfrak{m}(\tilde{t}_{1}^{0}){=}50\text{GeV} \\ & \mathfrak{m}(\tilde{t}_{1}^{0}){=}50\text{GeV} \\ & \mathfrak{m}(\tilde{t}_{1}^{0}){<}200\text{GeV} \\ & \mathfrak{m}(\tilde{t}_{1}^{0}){<}200\text{GeV} \end{split}$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 1403.4853 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-024 ATLAS-CONF-2013-088 1403.5222
EW direct	$ \begin{array}{c} \tilde{l}_{LR} \tilde{\ell}_{LR}, \tilde{\ell} \rightarrow \tilde{\ell} \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_1^- \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow \tilde{\ell}_L \nu \tilde{\ell}_L(\ell \tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_L \ell(\tilde{\nu} \nu) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 \hbar \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 \hbar \tilde{\chi}_1^0 \end{array} $	2 e,μ 2 e,μ 2 τ 3 e,μ 2-3 e,μ 1 e,μ	0 0 - 0 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.3 20.3 20.3	$ \vec{\tilde{\chi}}_{1}^{\pm} \vec{\tilde{\chi}}_{1}^{\pm} \vec{\tilde{\chi}}_{2}^{0} \vec{\tilde{\chi}}_{1}^{\pm}, \vec{\tilde{\chi}}_{2}^{0} \vec{\tilde{\chi}}_{1}^{\pm}, \vec{\tilde{\chi}}_{2}^{0} \vec{\tilde{\chi}}_{1}^{\pm}, \vec{\tilde{\chi}}_{2}^{0} $	90-325 GeV 140-465 GeV 180-330 GeV 700 GeV 420 GeV 285 GeV	$\begin{split} & m(\tilde{x}_1^0){=}0 \text{ GeV } \\ & m(\tilde{x}_1^0){=}0 \text{ GeV }, m(\tilde{\epsilon},\tilde{\nu}){=}0.5(m(\tilde{x}_1^+){+}m(\tilde{x}_1^0)) \\ & m(\tilde{x}_1^0){=}0 \text{ GeV }, m(\tilde{\epsilon},\tilde{\nu}){=}0.5(m(\tilde{x}_1^+){+}m(\tilde{x}_1^0)) \\ & \tilde{x}_1^0{=})m(\tilde{x}_1^0){=}0, m(\tilde{\epsilon},\tilde{\nu}){=}0.5(m(\tilde{x}_1^+){+}m(\tilde{x}_1^0)) \\ & m(\tilde{x}_1^+){=}m(\tilde{x}_2^0), m(\tilde{x}_1^0){=}0, \text{ sleptons decoupled} \\ & m(\tilde{x}_1^+){=}m(\tilde{x}_2^0), m(\tilde{x}_1^0){=}0, \text{ sleptons decoupled} \end{split}$	1403.5294 1403.5294 ATLAS-CONF-2013-028 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093
Long-lived particles	$\begin{array}{l} \text{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^- \text{ prod., long-lived } \tilde{\chi}_1^\pm\\ \text{Stable, stopped } \tilde{g} \text{ R-hadron}\\ \text{GMSB, stable } \tilde{\tau}, \tilde{\chi}_1^0 {\rightarrow} \tilde{\tau}(\tilde{e}, \tilde{\mu}) {+} \tau(e, \\ \text{GMSB, } \tilde{\chi}_1^0 {\rightarrow} \gamma \tilde{G}, \text{ long-lived } \tilde{\chi}_1^0\\ \tilde{q} \tilde{q}, \tilde{\chi}_1^0 {\rightarrow} qq \mu \text{ (RPV)} \end{array}$	Disapp. trk 0 μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - -	Yes Yes - Yes -	20.3 22.9 15.9 4.7 20.3	$ \begin{array}{c} \tilde{x}_{1}^{\pm} \\ \tilde{g} \\ \tilde{x}_{1}^{0} \\ \tilde{x}_{1}^{0} \\ \tilde{q} \end{array} $	270 GeV 832 GeV 475 GeV 230 GeV 1.0 TeV	$\begin{split} m(\tilde{k}_1^+) &-m(\tilde{k}_1^0) = 160 \ \text{MeV}, \ \tau(\tilde{k}_1^+) = 0.2 \ \text{ns} \\ m(\tilde{k}_1^0) = 100 \ \text{GeV}, \ 10 \ \mu\text{s} < \tau(\tilde{\chi}) < 1000 \ \text{s} \\ 10 \ \text{ctan} \beta < 50 \\ 0.4 < \tau(\tilde{k}_1^0) < 2 \ \text{ns} \\ 1.5 < c\tau < 156 \ \text{mm}, \ \text{BR}(\mu) = 1, \ m(\tilde{k}_1^0) = 108 \ \text{GeV} \end{split}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_\tau + X, \tilde{v}_\tau \rightarrow e + \mu \\ LFV pp \rightarrow \tilde{v}_\tau + X, \tilde{v}_\tau \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow e \tilde{v}_\mu, e \mu \tilde{v}_e \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow e \tau \tilde{v}_\tau, e t \tilde{v}_\tau \\ \tilde{g} \rightarrow q q \\ \tilde{g} \rightarrow \tilde{t}_1(t, \tilde{\chi}_1 \rightarrow b s \\ \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \left(\text{SS} \right) \end{array}$	- 7 jets - - 6-7 jets 0-3 b	- Yes Yes - Yes	4.6 4.6 4.7 20.7 20.7 20.3 20.7		1.61 Te 1.1 TeV 1.2 TeV 760 GeV 350 GeV 916 GeV 880 GeV	$ \begin{array}{l} \mathbf{V} \lambda_{3,1}^{\prime}=0.10, \ \lambda_{132}=0.05 \\ \lambda_{311}^{\prime}=0.10, \ \lambda_{1(2)33}=0.05 \\ \mathbf{m}(\hat{g})=\mathbf{m}(\hat{g}), \ c_{T_{LSP}}<1 \ \mathbf{n}\mathbf{m} \\ \mathbf{m}(\hat{f}_{1}^{0})>300 \ \mathbf{GeV}, \ \lambda_{121}>0 \\ \mathbf{m}(\hat{f}_{1}^{0})>300 \ \mathbf{GeV}, \ \lambda_{133}>0 \\ \mathbf{BR}(t)=\mathbf{BR}(b)=\mathbf{BR}(c)=0\% \end{array} $	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 e,μ (SS) 0	4 jets 2 b mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon sgluon M* scale	100-287 GeV 350-800 GeV 704 GeV	incl. limit from 1110.2693 $\mathrm{m}(\chi){<}80~\mathrm{GeV}, \mathrm{limit~of{<}}687~\mathrm{GeV~for~D8}$	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} = full$	8 TeV data			10 ⁻¹ 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Unfortunately...

Summary of CMS SUSY Results* in SMS framework SUSY 2013

Unfortunately...

Outline

- The physics landscape
- Hidden sector theories the neutrino minimal Standard Model

- Design of a new beam-dump experiment
- Sensitivity and future plans

A hidden sector?

- Rather than being heavy, could new particles be light but very weakly interacting?
- e.g. new, light "hidden sector" of particles which are singlets wrt gauge group of the SM
- Several possibilities for renormalisable singlet operators which each involve some hidden sector particle mixing with some SM "portal particle" :
 - Vector portal new U(1) $B_{\mu\nu}$ massive vector photon (paraphoton, secluded photon...) mixing with regular photon $\rightarrow \epsilon B_{\mu\nu}F^{\mu\nu}$
 - Higgs portal new scalar field $\chi \rightarrow (\mu \chi + \lambda \chi^2) H' H$
 - Axial portal new axial-vector field a Axion Like Particles (to distinguish from Peccei–Quinn axion) $\rightarrow (a/F)G_{\mu\nu}G^{\mu\nu}$, $(\delta_{\mu}a/F)\psi'\gamma_{\mu}\gamma_{5}\psi$
 - Neutrino portal new heavy neutral leptons (HNL) \rightarrow YH^TN[']L

Vector Portal

- Motivated by range of astrophysical observations e.g. positron excess, excess annihilation in the galactic centre (see e.g. arXiv:0810.0713)
- Experiments can produce a virtual photon in fixed-target, mixes into a dark photon (~ε), dark photon mixes back into a SM photon (~ε) then decays into e⁺e⁻, μ⁺μ⁻, π⁺π⁻ etc.
- As dark photon has no other interactions with SM particles - can fly through material : "light-shiningthrough-a-wall" experiments
- Constraints from a wide range of experiments – note results from CERN CHARM experiment

Higgs Portal

- [arXiv:1403.4638] gives example of the inflaton new scalar which, together with the Higgs, generates inflation of the early Universe
- Model has a 7 keV (warm) DM candidate and paper claims that model respects constraints from BICEP2 and Planck
- Interesting mass region 0.3 GeV < $m_x < 1$ GeV
- Little experimental exploration of interesting region...

Neutrino Portal

- The neutrino Minimal Standard Model (vMSM) [T.Asaka, M.Shaposhnikov, Phys. Lett B620 (2005) 17] aims to explain
 - Matter anti-matter asymmetry in the Universe, neutrino masses and oscillations, non-baryonic dark matter
 - by adding three right-handed, Majorana, Heavy Neutral Leptons (HNL), N_1 , N_2 and N_3

- N₁ mass in keV region, (warm) dark matter candidate
- N_{2,3} mass in 100MeV GeV region generate neutrino masses via see-saw mech. and produce baryon asymmetry of the Universe

Constraints on N₁ as DM

- **Stability** \rightarrow N₁ must have a lifetime larger than that of the Universe
 - Small yukawa couplings mean that N_1 can be very stable
- **Production** $\rightarrow N_1$ are created in the early Universe in reactions $II \rightarrow vN_1$, $qq \rightarrow vN_1$ etc. Need to provide correct DM abundance
- Structure formation → N₁ should be heavy enough so it does not erase non-uniformities at small scales
- **Decay** \rightarrow N₁ should not produce decays we have already excluded!
 - Main decay mode $N \rightarrow 3v$, clearly unobservable
 - Subdominant radiative decay N→vγ would give a monoenergetic photon with E_y=M_N/2

[some claims such a photon has been seen see e.g. arXiv:1402.4119, arXiv:1402.2301]

N₁ allowed parameter space

$N_{2,3}\ production\ and\ decay$

- M(N₂) ≈ M(N₃) ~ a few GeV → can dramatically increase amount of CPV to explain Baryon Asymmetry of the Universe (BAU)
- Very weak $N_{2,3}$ -to-v mixing (~ U²) $\rightarrow N_{2,3}$ are much longer-lived than the SM particles
 - Typical lifetimes >10 μ s for (N_{2,3}) ~ 1 GeV \rightarrow decay distance O(km)
 - too large U erases any BAU
- N_{2,3} can be produced in charm decays...

... and subsequently

decay

Experimental and cosmological constraints

 Baryon Asymmetry of the Universe (BAU), Seesaw and Big Bang Nucleosynthesis (BBN) constraints indicate that previous expts probed the interesting region only below the kaon mass :

- Previous searches :
 - PS191('88)@PS 19.2 GeV
 1.4×10¹⁹ pot, 128 m from target
 - CHARM('86)@SPS 400 GeV,
 2.4×10¹⁸ pot, 480 m from target
 - NuTeV('99)@Fermilab 800
 GeV, 2.5 × 10¹⁸ pot, 1.4 km
 from target
- BBN, BAU and Seesaw give stronger constraints than experimental searches for M_N > 400 MeV

Experimental and cosmological constraints

 Baryon Asymmetry of the Universe (BAU), Seesaw and Big Bang Nucleosynthesis (BBN) constraints indicate that previous expts probed the interesting region only below the kaon mass :

- Mixing at both production and decay
- For D mesons, typical BF expected in allowed vMSM parameter space then,

 $B_{D\to N} \sim 10^{-8} - 10^{-12}$

- τ can give further factor **10**⁻⁴ \rightarrow **need** >**10**¹⁶ **D** mesons!
- Strong motivation to explore allowed space in region accessible with charm decays (m<2 GeV) but need >10¹⁶ D mesons!

Outline

- The physics landscape
- Hidden sector theories the neutrino minimal Standard Model
- Design of a new beam-dump experiment

• Sensitivity and future plans

Experimental design

- Propose a beam dump experiment at the CERN SPS with a total of ~2×10²⁰ protons on target (pot)
- Crucial design parameters: residual neutrino and muon fluxes can produce e.g K⁰ that decay in detector and mimic signal events
 - Short-lived resonances generate 10^9 muons/spill \rightarrow muon shield
 - Neutrinos from light meson decays \rightarrow dense target/hadron absorber/

evacuate decay volume

HNLs produced in charm decays have significant p_T:

- Detector must be close to target to maximise geometrical acceptance
- Shielding for muons must be as short as possible

Secondary beam-line

- Proton target
 - Preference for relatively slow beam extraction O(s) to reduce detector occupancy
 - No requirement to have a small beam spot

Detector Concept

- Aim to reconstruct HNL decays into the final states: $\mu^-\pi^+$, $\mu^-\rho^+$, $e^-\rho^+$
- Require long decay volume, magnetic spectrometer, muon detector and EM calorimeter – can all be made with existing technologies

Status of the proposal

- Submitted our EOI in Oct 2013 [CERN-SPSC-2013-024 / SPSC-EOI-010 / <u>arXiv:1310.1762</u>]
- SPSC discussed our proposal Jan 2014, official feedback :

"The Committee **received with interest** the response of the proponents to the questions raised in its review of EOI010.

The SPSC recognises the interesting physics potential of searching for heavy neutral leptons and investigating the properties of neutrinos.

Considering the large cost and complexity of the required beam infrastructure as well as the significant associated beam intensity, such a project should be designed as a general purpose beam dump facility with the broadest possible physics programme, including maximum reach in the investigation of the hidden sector.

To further review the project the Committee **would need** an extended proposal with further developed physics goals, a more detailed technical design and a stronger collaboration."

- From 17 authors of EOI → 43 groups from 15 countries expressed an interest to join
- Following SPSC review, CERN DG formed a dedicated Task Force to evaluate required infrastructure ...

CERN task force

- Relevant CERN divisions have made detailed assessments of :
 - Target design
 - Radiological aspects
 - Civil engineering
 - Site selection
 - Costs and manpower requirements
- Task Force report published and discussed at the extended CERN directorate meeting in July '14 → encouraged to prepare a technical proposal
- New CERN management in 2015!

Outline

- The physics landscape
- Hidden sector theories the neutrino minimal Standard Model
- Design of a new beam-dump experiment
- Sensitivity and future plans

Sensitivity – neutrino portal

• For M_N < 2 GeV the proposed experiment has discovery potential for the cosmologically favoured region with $10^{-6} < U^2 < a$ few × 10^{-9}

Sensitivity – vector portal

 Comparable studies for axion, higgs portals, R-parity violating neutralinos, light-goldstinos... in progress

Schedule

		2014	2015	2016	2017	20	18	2019	2020	2021	2022	2023	2024	2025	2026	
Activity		Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q	Q1 Q2 Q3 Q4	01 02 03 04	Q1 Q2	03 04	Q1 Q2 Q3 Q4								
	LHC operation															
	SPS operation															
	Technical Proposal															
	SHIP Project approval						I I									
riment	Technical Design Reports and R&D															
	TDR approval															
	Detector production															
ğ	Detector installation						I I									
ü	SHIP dry runs and HW commissioning						I I			I T						
	SHIP commissioning with beam						I I					_ ,	ł	↓		
	SHIP operation		↓ ↓													
+ infra	Pre-construction activities(Design, tendering, permits)															
	CE works for extraction tunnel, target area						L									
	CE works for TDC2 junction cavern															
Ü	CE works for shield tunnel and detector hall						I I									
	General infrastructure installation															
	Detailed design, specification and tender preparation															
	Technical Design Report Approval															
	Integration studies															
line	Production and tests															
	Refurbishment of existing equipment						L									
an	Removal of TT20 equipment for CE															
ä	Installation of new services and TT20 beam line															
	Installation of services for new beam line to target															
	Installation of beam line and tests															
	Muon shield installation (commissioning)															
t	Design studies and prototyping															
rge	Production and installation															
Ē																

(2015)

(2018)

(2018-2022)

(2022-2023)

(2023-2027)

- Technical proposal
- Technical Design Report
- Construction and installation
- Commissioning
- Data taking and analysis of 2×10²⁰ pot

Conclusions

- The proposed experiment SHIP will search for NP in the largely unexplored domain of new, very weakly interacting particles with masses below the Fermi scale
- Detector is based on existing technologies
- Ongoing discussion of the infrastructure with CERN experts
- The discovery of a HNL would have enormous impact could solve several of the significant problems of the SM
 - The origin of the baryon asymmetry of the Universe
 - The origin of neutrino mass
 - The results of this experiment, together with cosmological and astrophysical data, could be crucial to determine the nature of Dark Matter
- Wide range of other hidden sector physics under investigation

Backup

HPS

Expected event yield

- Integral mixing angle U² is given by U² = $U_e^2 + U_{\mu}^2 + U_{\tau}^2$
- Make a conservative estimate of the sensitivity by only considering the decay $N_{2,3} \rightarrow \mu^{-} \pi^{+} \text{probes } U_{\mu}^{-2}$
- Expected number of signal events then,

$$N_{signal} = n_{pot} \times 2\chi_{cc} \times BR(U_{\mu}^{2}) \times \varepsilon_{det}(U_{\mu}^{2})$$

$$\begin{array}{l} \mathsf{N}_{\text{pot}} = 2 \times 10^{20} \\ \chi_{\text{cc}} = 0.45 \times 10^{-3} \\ \mathsf{BR}(\mathsf{U}_{\mu}^{\ 2}) = \mathsf{BR}(\mathsf{D} {\rightarrow} \mathsf{N}_{2,3} \mathsf{X}) \\ & \times \mathsf{BR}(\mathsf{N}_{2,3} {\rightarrow} \mu \pi) \\ \epsilon_{\text{det}}(\mathsf{U}_{\mu}^{\ 2}) = \text{prob. for } \mathsf{N}_{2,3} \text{ to} \\ \mathsf{decay in detector and } \mu, \pi \\ \mathsf{to be reconstructed} \end{array}$$

- Strongest experimental limit for $M_N \sim 1 \text{ GeV}$ at $U_{\mu}^2 = 10^{-7}$
 - Would then expect $\tau_N = 1.8 \times 10^{-5} s$ and $\sim 12k$ fully reconstructed $N \rightarrow \mu^- \pi^+$
- For cosmologically favoured region $U_{\mu}^{2} = 10^{-8} (\tau_{N} = 1.8 \times 10^{-4} s)$
 - Would expect 120 fully reconstructed events

Axion Portal

Similar to the Higgs portal, from arXiv:1008.0636, Essig et al

Right: Gray: the combined exclusion region from meson decays; green: CHARM; blue: supernova SN 1987a; red: muon anomalous magnetic moment.

Where to produce charm?

• cc cross-section :

− LHC (\sqrt{s} = 14 TeV): with 1 ab⁻¹ (i.e. 3-4 years): ~ 2×10¹⁶ in 4π

- SPS (400 GeV p-on-target (pot) √s = 27 GeV): with 2×10²⁰ pot (i.e. 3-4 years): ~ 2×10¹⁷
- Fermilab: 120 GeV, 10× smaller σ_{cc} , 10×pot by 2025 for LBNE
- Note B-decays produced with 20-100 smaller cross-section and dominant semi-leptonic decay would be $D\mu\nu$ i.e. still limited to 3 GeV

Detector Technologies

Dipole magnet

- Magnet similar to LHCb design required, but with ~40% less iron and 3× less power dissipated
- Free aperture of ~16 m² and field integral ~ 0.5 Tm over 5 m length

Vacuum tank and straw tracker

- NA62 has 10⁻⁵ mbar pressure cf. 10⁻² mbar required here
- Have demonstrated gas tightness of straw tubes with 120 μm spatial resolution and 0.5% X_0/X material budget in long term tests

Electromagnetic calorimeter

 Shashlik technology used in LHCb would provide economical solution with good energy and time resolution

Masses and couplings of HNLs II

• Constraints from **BAU**, **Seesaw** and Big Bang Nucleosynthesis (**BBN**) :

- Branching fractions depend on the level of mixing, typically,
 - $\ B(N \to \mu^{-}\!/e^{-} \, \pi^{+}) \ \sim 0.1 50\%$
 - $B(N \rightarrow \mu^{-}/e^{-}\rho^{+}) \sim 0.5 20\%$
 - $B(N \rightarrow \nu \mu e) \sim 1 10\%$
- Focus on $\mu^-\pi^+$ signature, below
- μ⁻ρ⁺ and e⁻π⁺ final states could extend the sensitivity

Residual neutrino flux

• Momentum spectrum of the neutrino flux after the muon shield

 At atmospheric pressure expect 2×10⁴ neutrino interactions in the decay volume per 2×10²⁰ pot

 \rightarrow becomes negligible at 0.01 mbar

Other BSM physics

- Can make searches for other light, very weakly interacting new particles :
 - Light superpartners of goldstino in SUSY models e.g. D→πX, X→I+I⁻
 [Gorbunov (2001)]
 - R-parity violating neutralinos in SUSY models e.g. D→IX, X→I⁺I⁻v
 [A.Dedes, H.K Dreiner, P Richardson (2001)]
 - Massive paraphotons (in secluded dark matter models) e.g. Σ→IX, X→I+I⁻
 [M.Pospelov, A. Ritz, M.B. Voloshin (2008)]

Other facilities

- Have considered if could perform experiment elsewhere
- Fermilab
 - 120 GeV proton beam, 4×10¹⁹ POT
 - · factor ten lower event yield than in the proposed SPS experiment
 - 800 GeV proton beam, 1×10¹⁹ POT
 - Lower POT would be approximately compensated by higher charm crosssection
 - Would require much longer muon shield \rightarrow loss of acceptance
- KEK
 - 30 GeV proton beam, 1×10²¹ POT
 - large uncertainty due to the poor knowledge of the charm cross-section at low energy
 - Estimate factor 1.5-2 lower signal yields
- Colliding beam experiment at LHC, 1000 fb⁻¹, 14 TeV
 - Assuming experiment located 60m away from the interaction region and 50 mrad off-axis to avoid LHC beams – factor 200 worse than proposal

N₁ as Dark Matter

• For small Yukawa couplings, HNL can be long-lived and therefore a dark matter candidate

$$\sum_{\nu_e}^{N} \sum_{\bar{\nu}_{\alpha}}^{\nu_e} \sum_{\bar{\nu}_{\alpha}}^{Z} \sum_{\nu_{\alpha}}^{\nu_{\alpha}} \text{Lifetime} = \frac{192\pi^3}{G_F^2 M^5 U^2} \approx 10^{27} \sec\left(\frac{\text{keV}}{M}\right)^5 \left(\frac{10^{-8}}{U^2}\right)$$

Characteristic signature: can have radiative decay which will give a monochromatic decay line in the spectra of galaxies

$$\rightarrow \otimes \rightarrow \longrightarrow$$

Searches for N₁

- N₁ has been searched or by the XMM-Newton, Chandra, Suzaku and Integral experiments
- Spectral resolution is insufficient (require $\Delta E/E \sim 10^{-3}$)
- Several proposed/planned x-ray missions which will have sufficient resolution:

Origin/Xenia

Reading the Metal Diaries of the Universe

Muon Shield

- Without μ -filter: 5×10⁹/ spill (5×10¹³pot)
 - Low-p: still from π /K-decay
 - High-p: ω/ρ -decays to $\mu\mu$
- Idea to reduce background from μ -interactions to below v-bkgrd (...)
- Acceptable rate ~10⁵ μ / **2×10²⁰ pot**
- Main sources of muons simulated using PYTHIA (10⁹ p @ 400 GeV)
- Two alternatives for shield:
 - Passive: i.e. use high Z material: need 54 m of W to stop 400 GeV μ
 - Active (+passive): need 40 Tm to deflect 400 GeV μ outside acceptance

Neutrino backgrounds

- Neutrino interactions in the decay volume :
 - After shield expect 2×10⁴ per 2×10²⁰
 pot at atmospheric pressure
 - \rightarrow negligible at 0.01 mbar
- Neutrino interactions in the final part of the muon shield :
 - Use GEANT and GENIE to simulate the CC and NC neutrino interactions
 - \rightarrow CC(NC) rate of ~6(2)×10⁵ per intn. length per 2×10²⁰ pot
 - Use veto-station to suppress short lived
 - ν_{μ} + p \rightarrow X + K_L $\rightarrow\mu\pi\nu$ main bkgrd
 - Requiring μ -id. for one of the two decay products
 - \rightarrow 150 two-prong vertices in 2×10²⁰ pot

Item	Cost [MCHF]
Extraction and proton beam line	19.9
Extraction upgrades, beam interlock	0.4
New MSSB splitter/switch magnets	4.2
Other magnets	1.6
Powering, including cables	6.0
Beam vacuum	3.0
Beam instrumentation	1.9
Beam interlocks	0.4
Other beam line costs	2.4
Target Station	17.1
Target (+spare) plus exchange system	4.6
Hadron absorber	8.1
Helium enclosure of target station	2.0
Removable shielding	0.5
Controls	0.9
Prototypes and testing	1.0
Muon filter	11.0
Muon shield, passive option, reusing 800 t of lead from OPERA	11.0
Civil Engineering	45.1
Junction cavern	5.0
Extraction tunnel	8.4
Target cavem	8.9
Muon filter tunnel	1.9
Experimental cavern	15.1
New access road	0.9
Site investigation	0.2
Studies	0.7
Contingency	4.0
Infrastructure	20.8
Cooling plants	4.9
Ventilation plants	5.1
Electrical infrastructure beam line zone	0.8
Electrical infrastructure target area and muon filter	1.4
Electrical infrastructure detector cavern	1.8
Access system beam lines, target and detector cavern	1.8
Safety systems	1.0
Radiation protection	1.5
Transport: cranes target station, detector cavern, shafts	1.9
Transport and handling	0.6
Total	113.9

Item	Staff FTE	Fellows MCHF		
Extraction and proton beam line	31.5	1.5		
Extraction upgrades	1	0.1		
New MSSB splitter/switch magnets	3	0.2		
Other magnets	2			
Powering, including cables	12			
Beam vacuum	2	0.2		
Beam instrumentation	4	0.4		
Interlocks	1			
Other beam line costs	6.5	0.6		
Target Station	35	1.6		
Target (+spare) & exchange syst		0.6		
Hadron absorber		0.6		
Helium enclosure of target station	35			
Removable shielding				
Controls		0.4		
Prototypes and testing				
Muon filter				
Muon shield, passive opt.,OPERA PB				
Civil Engineering	10	0.7		
Junction cavern				
Extraction tunnel				
Target cavern				
Muon filter tunnel	10	0.7		
Experimental cavern				
New access road				
Site investigation				
Infrastructure	14.4	1.2		
Cooling plants	3.0			
Ventilation plants	2.0			
Electrical infrastructure	1.3	0.8		
Access &safety beam lines+detector	1.5			
Safety systems	1.3			
Radiation protection	4.0	0.4		
Transport : cranes, lifts, tooling	1.3			
Total	90.9	5.0		