Indirect detection of WIMP dark matter

Jan Conrad Oskar Klein Centre Physics Department Stockholm University conrad@fysik.su.se

Progress on Old and New Themes in Cosmology (PONT), Avignon, 2014

Indirect detection of Dark Matter

$$\begin{array}{c} \hline \begin{array}{c} \textbf{Particle Physics} \\ \hline 1 \\ \hline 4\pi \frac{\langle \sigma_{\rm A} v \rangle}{2m_{\chi}^2} \Sigma_f \frac{dN}{dE} B_f \end{array} \end{array}$$

v,γ: rate = PPP × Astrophysical part (APP)

$$APP = "J - factor" = \iint d\Omega dl \rho^2(l)$$

cosmic rays PPP = q(r,p,t)

$$\begin{aligned} \frac{\partial F(\mathbf{r}, p, t)}{\partial t} &- \nabla (\mathbf{D}_{xx} \nabla F) + \nabla (\mathbf{u}F) - \frac{\partial}{\partial p} \left(p^2 D_{pp} \frac{\partial}{\partial p} \frac{F}{p^2} \right) \\ &+ \frac{\partial}{\partial p} \left[\dot{p}F - \frac{p}{3} (\nabla \mathbf{u})F \right] + \frac{F}{\tau_f} + \frac{F}{\tau_d} = q(\mathbf{r}, p, t), \end{aligned}$$

B-field, radiation field, gas, E-field: Diffusion reacceleration convection energy loss Spallation, decay

gamma rays: the golden channel

Gamma-rays: sensitivity illustration

Targets and Challenges - Satellites

LIKELIHOOD OF STRONG SIGNAL

LARGE UNCERTAINTIES

ROBUST CONSTRAINTS

Targets and Challenges - Satellites

Galaxy Clusters

Galactic

centre

LARGE Galactic UNCERTAINTIES diffuse

Extra Galactic Diffuse LIKELIHOOD OF STRONG SIGNAL

> Unfortunately no target here, but dwarfs can provide very strong constraints

> > ROBUST CONSTRAINTS

> > > 0

Dwarf galaxies

6

Constraints from likelihood combination of dwarf galaxies <u>Fermi-LAT: Phys. Rev. Lett. 107, 24</u>

<u>Fermi-LAT: Phys. Rev. Lett. 107, 241302 (2011)</u> <u>Fermi-LAT: Phys. Rev. D . 89 , 042001, (2014)</u>

Targets and Challenges – IACT

LIKELIHOOD OF STRONG SIGNAL

Galactic centre halo

LARGE UNCERTAINTIES

0

0

ROBUST CONSTRAINTS

Dwarf galaxies,

Most important gamma–ray constraints summary

What about discovery?

Extended emission in the Inner Galaxy consistent with dark matter?

E² dN/dE (GeV/cm²/s/sr)

T. Daylan+ (2014)

- Excess exhibits spatial and spectral features consistent with dark matter (quark annihilation, 30-40 GeV, thermal cross-section)
- Potential problems arise from the custom made event selection and corresponding diffuse modelling. Whether these aspects invalidate the conclusion, I don't know.
- Can this be resolved in the Galactic Centre? I doubt it

Future experiments

Future Gamma-ray constraints – from now to 2020

Summary (gamma rays):

- General:
 - Gamma rays are the golden channel for indirect detection of dark matter, due to the wealth of information they carry and simple propagation
- Status:
 - The most robust constraints (and stringent) are obtained from dwarf galaxies (Fermi-LAT) and the vicinity of the galactic center (HESS)
 - Gamma ray searches provide the most stringent, robust constraints to WIMP dark matter, excluding thermal WIMPS below masses of about 20-30 GeV.
 - An excess at the Galactic Center with respect to simple diffuse emssion models can be interpreted as dark matter → solution in the next iteration of the combined dwarf analysis?

• Outlook:

 Fermi-LAT/CTA will be able to exclude thermal WIMPS from a few GeV upto several TeV within the next decade → we are entering the endgame for the WIMP paradigm

Cosmic rays: a clear signal – but of what?

PAMELA/AMS

Positron fraction

Requires non-standard source of positrons but what?

Dark Matter

- Data prefers models with leptonic annihilation, largish masses (~ TeV), large x-sec or boost
- Difficult to accomdate both \mathbf{O} the positron fraction and the hard Fermi-LAT electron spectrum (decay via light mediator states)

See also Pospelov talk

5

10

50

100

E(GeV) e.g. Cholis+Hooper (2013)

 $M_{\nu} = 600 \text{ GeV} / 1.5 \text{ TeV}$

 $\chi \chi \longrightarrow \mu^+ \mu^-$

0.50

0.20

0.10

0.05

0.02

 $^{+}/(e^{+}+e^{-}$

E (GeV)

Pulsars or SNRs?

- Single mature pulsar or sum of pulsars
 - Monogem
 Geminga

• SNR

e⁺ produced inside SNR → harder positron spectrum

Blasi+ (2009), Ahlers+ 2009

Mertsch+Sarkar (2014)

e.g. Linden+Profumo (2013)

e.g. Cholis

Can air cherenkov telescopes help?

Linden, Profumo (2013)

See also Regis, Ullio (2009)

13-08-13 Jan Conrad, Oskar Klein Centre, Stockholms Universitet

20

Anti-deuteron: GAPS

- TOF and Si(Li) strip detector, signature: x-rays from deexcitation of exotic atom and tracks of decay products (p, pions)
 - Successful prototype flight in 2012
 - First flight 2018/2019
 - Full sensitivity achieved: 2020/21 (?), (AMS 5 year reached by 2017)

Summary (cosmic rays):

• General:

- Cosmic (anti-) rays can provide convincing signals of Dark Matter
- Competetive constraints for leptonic channels
- Status:

e.g. Bergström+(2013)

- AMS has spectacularly confirmed the existence of a new source of positrons.
- DM IMHO even less likely than after PAMELA.

• Outlook:

- Anti-proton/spectra and B/C measurements highly anticipated to rule out or confirm proposal of SN production
- Can IACTs provide sensitive anisotropy measurement?

Neutrinos: direct detection in disguise

IceCube and ANTARES

~ 5000 channels

Mainly northern hemisphere ~ 900 channels
 Mainly southern
 hemisphere

First, constraints on annihilation cross-sections

Targets and Challenges – neutrino telescopes

Indirect limits ICE3 compared to gamma rays

27

τ channel

Neutrinos: detection from the Sun

Γ_{Capture} ($\propto \sigma_{\text{SD}}$) = 2 $\Gamma_{\text{annihilation}}$

→ Hydrogen dominated target → excellent sensitivity SD cross section

09-08-07 Jan Conrad, Stockholm Universitet

Icecube 79 and ANTARES

Summary (neutrinos):

- General:
 - The main niche for neutrino telescopes are models with large SD cross section (solar WIMPs)
 - Annihilations: hard to compete with IACT, maybe at very high masses (~10s of TeV ...?), where neutrino x-sec/muon range can compensate 1/m**2 scaling of the sensitivity and for loptophillic models.
 - for leptophillic models
- Status:
 - Ice3 and Antares in full swing
- Outlook:
 - PINGU: 1-2 dex
 improvement at low masses
 (below 100 GeV), ~factor 2 at
 large masses ...
 09-08-07 Jan Conrad, Stockholi

Last slide: complementarity in effective theory approach

<u>Arrenberg+. Snowmass</u> (2013)

APP- smooth Dark matter halo density profile

Cosmological N-body simulations:

Navarro-Frenk-White

Einasto

→ "Cuspy"

Stellar dynamics:

e.g. Burkert.

→ "Cored"

R. Catena

Strongest signal from the Galactic Center !

Excess continued:

- The spectrum is consistent with a DM particle of mass (30 40 GeV) annihilating to quarks and thermal annihilation x-sec
 - \rightarrow Smack on the current paradigm
- Excess is spherically symmetric
- The emission profile is consistent with what a Dark Matter distribution predicts, and less so with the prime candidate for source confusion (pulsars).
- Potential problems arise from the custom made event selection and corresponding diffuse modelling. Whether these aspects invalidate the conclusion can not be concluded from the paper

• 3.3σ LEE corrected (~50 events)

A line in Fermi-LAT data?

Bringmann+ (2012) Weniger (2012)

• 5σ LEE corrected, and two lines?

Su&Finkbeiner (2012) Tempel+ (2012) (4.5σ)

 2σ LEE corrected and signal in Earth Limb

Ackermann+ (Fermi-LAT) (2013)

Signal 1.5 deg offset

616

Significance until September 2013

Figure courtesy of C. Weniger

Line results summary:

Constraints on leptonic channels

G

Dwarfs galaxies – cleanest target

- DM dominated (M/L ~10--1000).
- Nearby (~ **100 kpc**)
- Stellar velocities can be used to measure DM density (error can be propagated to particle constraints) → propagated to constraints

Name	1	b	d	$\log_{10}(J)$	σ	ref.
	deg.	deg.	$\rm kpc$	$\log_{10}[\text{GeV}]$	$V^2 \mathrm{cm}^{-5}$]	
Bootes I	358.08	69.62	60	17.7	0.34	[15]
Carina	260.11	-22.22	101	18.0	0.13	[16]
Coma Berenices	241.9	83.6	44	19.0	0.37	[17]
Draco	86.37	34.72	80	18.8	0.13	[16]
Fornax	237.1	-65.7	138	17.7	0.23	[16]
Sculptor	287.15	-83.16	80	18.4	0.13	[16]
Segue 1	220.48	50.42	23	19.6	0.53	[18]
Sextans	243.4	42.2	86	17.8	0.23	[16]
Ursa Major II	152.46	37.44	32	19.6	0.40	[17]
Ursa Minor	104.95	44.80	66	18.5	0.18	[16]

e.g:

Charbonnier+, MNRAS 418 (2011) 1526 Strigari+,Phys. Rev. D, 75, 083526 Evans+, Phys. Rev., D69, 123501, (2004)

Universal spectral signatures

Ullio et al. Phys.Rev.D66:123502,2002

Spectrum for Galactic Centre source Sag A*

43

First light for worlds largest Cherenkov Telescope: HESS II, Summer 2012

Cosmic rays: signatures

Can it be secondary? E.g by close by SNRs?

e⁺ produced inside SNR → harder positron spectrum Blasi+ (2009), Ahlers+ 2009

Mertsch+Sarkar (2014)

Prediction: rise in p/anti-p and B/C ratio Marginally consistent with current AMS data, if you ask me.

Weakly Interacting Massive Particles (WIMPs)

The weak interaction mass scale and ordinary gauge couplings give right relic DM density without fine-tuning. Mass scale O(GeV)-O(TeV), makes them Cold Dark Matter

