Quark CP violation test from the B-factories

IPA

2014.08.18-22

A.Kuzmin Budker Institute of Nuclear Physics and Novosibirsk State University

Ş

Maskawa

CP is violated in Standard model via quark mixing

$$V_{\rm CKM} \equiv V_L^u V_L^{d\dagger} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$\begin{array}{cccc} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{array}$$

Unitarity triangle

B-factories

Integrated luminosity

Types of CP violation in B(D) system

-Direct CP violation in decay(neutral and charged)

$$\Gamma(B \to f) \neq \Gamma(\bar{B} \to \bar{f})$$

$$|ar{\mathcal{A}}_{ar{f}}/\mathcal{A}_{f}|
eq 1$$

-CP violation in mixing(neutral)

$$\Gamma(B \to \bar{B}) \neq \Gamma(\bar{B} \to B) |B_{H,L}\rangle = p|B^0\rangle \pm q|\bar{B}^0\rangle |q/p| \neq 1$$

-CP violation via interference between mixing and decay(neutral)

$$\Gamma(B \to f_{\rm CP}) \neq \Gamma(\bar{B} \to f_{\rm CP})$$

$$\arg \left| \frac{q}{p} \frac{\bar{\mathcal{A}}_{\bar{f}}}{\mathcal{A}_{f}} \right| \neq 0$$

Mixing-induced CPV-measurement at B-factories

$$e^+e^-
ightarrow \Upsilon(4S)
ightarrow B^0 ar{B^0}(B^+B^-)$$

-Together with direct CPV assymmetric B-factory allows to measure mixing-induced CPV

-B-B are produced in quantum-entangele state -Assymmetric B-factories allow to determine Δt via Δz

Asymmetry(
$$\Delta t$$
) = $\frac{\Gamma(\bar{B} \to f_{CP}) - \Gamma(B \to f_{CP})}{\Gamma(\bar{B} \to f_{CP}) + \Gamma(B \to f_{CP})} = \mathcal{A}_{CP} \cos(\Delta m \,\Delta t) + \mathcal{S}_{CP} \sin(\Delta m \,\Delta t)$

$$\mathcal{S}_{\mathsf{CP}} = +\frac{2\mathrm{Im}\lambda_{\mathsf{CP}}}{1+|\lambda_{\mathsf{CP}}|^2} \qquad \qquad \mathcal{A}_{\mathsf{CP}} = -\frac{1-|\lambda_{\mathsf{CP}}|^2}{1+|\lambda_{\mathsf{CP}}|^2} \qquad \qquad \lambda_{\mathsf{CP}} = \xi_{f_{\mathsf{CP}}} \frac{q}{p} \frac{A_{f_{\mathsf{CP}}}}{A_{f_{\mathsf{CP}}}}$$

B→charmonium+K⁰ mode ($\phi_1(\beta)$ -angle)

Golden mode:

Purity=97%

5.2 5.22 5.24 5.26 5.28 5.3

M_{bc} (GeV/c²)

N_{sig}=8733

5.22

5.2

Purity=93%

5.24

m_{ES} (GeV/c²)

5.26

5.28

B→charmonium+K⁰ mode ($\phi_1(\beta)$ -angle)

PRD 79, 072009(2009)

PRL 108, 171802(2012)

B→charmonium+K⁰ mode ($\phi_1(\beta)$ -angle)

New penguin B→ω(η')+K⁰ modes

- SM predicts for $b \to d\bar{d}s$: $A_{CP} \approx 0$; $S_{CP} \approx \xi_{CP} \sin 2\phi_1$
- Tree amplitude $b \rightarrow u \bar{u} s$ is Cabibbo- and color-suppressed
- Penguin amplitude can be contributed by new heavy particles
- Observation of ϕ_1^{eff} different from ϕ_1 clear signal of New Physics

B→ωK⁰

eV/c²]

 $-B^0 \rightarrow \omega K_s$ is CP=-1 final state

-Extended maximum likelihood fit with 7 variables:

PRD 90, 012002 (2014)

-Consistent with SM

B→η'K⁰

B→η'K⁰

-most precise measurement of penguin amplitude -consistent with SM

Summary of penguin modes for Φ_1

No evidence of New Physics at current level sensitivity

$B^0 \rightarrow \pi^+ \pi^-$, Measurement of $\Phi_2(\alpha)$

$B^0 \rightarrow \pi^+ \pi^-$, Measurement of $\Phi_2(\alpha)$

PRD 87, 052009(2013)

PRD 88, 092003(2013)

$B^0 \rightarrow \pi^0 \pi^0$, Measurement of $Φ_2(\alpha)$

Consistent with SM

Measurement of $\Phi_2(\alpha)$

TM & @ Nelvar

 $\Phi_2 = \alpha = (85.4^{+4.0}_{-3.8})^{\circ}$

Measurement of $\Phi_{3}(\gamma)$

color suppressed $\propto A\lambda^3(\rho - i\eta)$

Decays $B^{\pm} \rightarrow D^{(*)0} K^{(*)\pm}$

There are several techniques of $\Phi_3(\gamma)$ extraction from $B^- \rightarrow^{(} \bar{D}^{)0} K^-$:

- GLW: Using D eigenstates: $|D_{1,2}\rangle \propto |D^0\rangle \pm |\bar{D^0}\rangle K^+K^-, \pi^+\pi^-, K_S\pi^0$ Gronau and London PLB 253, 483 (1991) Gronau and Wyler PLB 265,172 (1991)
- ADS: Using $|K^+\pi^-\rangle$ (CF for *D* and DCS for \overline{D}) $K\pi$ Atwood, Danietz and Sony PRL 78, 3257(1997)
- GGSZ: Using Dalitz analysis of three-body decays $K_S \pi^+ \pi^-$, $K_S K^+ K^-$ Giri, Grossman, Soffer and Zupan PRD 68, 054018(2003) Bondar, Proc.BINP Dalitz analysis meeting(2002)

Measurement of $\Phi_3(\gamma)$

 $\Phi_3(\gamma) = (67^{+12}_{-12})^\circ$

Results of B-factories and LHCB

 $\Phi_2 = \alpha = (85.4^{+4.0}_{-3.8})^{\circ}$

Direct CPV in Dalitz $B^+ \rightarrow K_s \pi^0 \pi^+$

CPV in mixing

PRL 111, 102802(2013)

- Reco: Partial reconstruction of $B^0 \to D^{*-} l^+ \nu_l$
- Tag: Using charged Kaon tag

$$A_T = \frac{N(\ell^+ K_T^+) - N(\ell^- K_T^-)}{N(\ell^+ K_T^+) + N(\ell^- K_T^-)} \approx \mathcal{A}_{r\ell} + \mathcal{A}_K + \mathcal{A}_{CP}$$

Kaon from Reco side

$$A_R = \frac{N(\ell^+ K_R^+) - N(\ell^- K_R^-)}{N(\ell^+ K_R^+) + N(\ell^- K_R^-)} \approx \mathcal{A}_{r\ell} + \mathcal{A}_K + \mathcal{A}_{CP}\chi_d.$$

Lepton assymmetry (without Tag) $A_{\ell} \approx A_{r\ell} + A_{CP} \chi_{d}$

$$\mathcal{A}_{CP} \equiv \frac{N(B^0 B^0) - N(\overline{B}^0 \overline{B}^0)}{N(B^0 B^0) + N(\overline{B}^0 \overline{B}^0)}$$
$$= (0.06 \pm 0.17^{+0.38}_{-0.32})\%$$

$$\Delta_{CP} = 1 - |q/p| =$$

$$(0.29 \pm 0.84^{+1.88}_{-1.61}) \times 10^{-3}$$

CPV in D mesons

-At B-factories production of D mesons is of the same order as of B -CPV in charm expected to be small

-Flavor tagged D are taken from D*+→D⁰π⁺_{slow}
 -Observables: M_{Kπ} and ΔM=M_{Kππslow}-M_{Kπ}
 Experimental techniques:
 -Time-dependent analysis:
 Difference in decay time distribution of D-f and D-f
 -Time integrated analysis:
 Difference in time-integrated decay rates of D-f and D-f

 $\omega(782)$

 $f_2(1270)$

 $\rho(1450)$

ππ S-wave

Study of $D^0 \rightarrow K_s \pi^- \pi^+$

PRD 89, 091103R(2014)

Decay $D^0 \rightarrow K_S \pi^+ \pi^-$ includes many

0.0057

0.0141

0.0012

0.1288

921 fb⁻¹

intermediate states:			
Resonance	Amplitude	Phase (deg)	Fit fraction
$K^{*}(892)^{-}$	1.590 ± 0.003	131.8 ± 0.2	0.6045
$K_0^*(1430)^-$	2.059 ± 0.010	-194.6 ± 1.7	0.0702
$K_2^*(1430)^-$	1.150 ± 0.009	-41.5 ± 0.4	0.0221
$K^{*}(1410)^{-}$	0.496 ± 0.011	83.4 ± 0.9	0.0026
$K^{*}(1680)^{-}$	1.556 ± 0.097	-83.2 ± 1.2	0.0016
$K^{*}(892)^{+}$	0.139 ± 0.002	-42.1 ± 0.7	0.0046
$K_0^*(1430)^+$	0.176 ± 0.007	-102.3 ± 2.1	0.0005
$K_2^*(1430)^+$	0.077 ± 0.007	-32.2 ± 4.7	0.0001
$K^{*}(1410)^{+}$	0.248 ± 0.010	-145.7 ± 2.9	0.0007
$K^{*}(1680)^{+}$	1.407 ± 0.053	86.1 ± 2.7	0.0013
$\rho(770)$	1 (fixed)	0 (fixed)	0.2000

 1.300 ± 0.013

 0.532 ± 0.027

 0.0370 ± 0.0004 114.9 \pm 0.6

 -31.6 ± 0.5

 80.8 ± 2.1

$dN_{D \to f}$	$e^{-\Gamma t} \left[A \left(m^2 - m^2 \right) \right] q$	$(y+ix_{\Gamma t})$	$\bar{1}(m^2 m^2)$
dt	$e \qquad \mu(m, m_+) + \frac{-}{p}$	$(\frac{-1}{2})^{2}$	$(m_{-}, m_{+}))$

- Unbinned maximum likelihood fit in 3D: t, m_{-}^2 , m_{+}^2
- Signal model with 16 resonances

• Background from sidebands

Fit	type	Parameter	Fit result
No	CPV	x(%)	$0.56 \pm 0.19^{+0.03}_{-0.09}{}^{+0.06}_{-0.09}$
		y(%)	$0.30\pm0.15^{+0.04}_{-0.05}{}^{+0.03}_{-0.06}$
CI	^{P}V	x(%)	$0.56 \pm 0.19^{+0.04}_{-0.08}{}^{+0.06}_{-0.08}$
		y(%)	$0.30 \pm 0.15^{+0.04}_{-0.05}{}^{+0.03}_{-0.07}$
		q/p	$0.90^{+0.16}_{-0.15}^{+0.05}_{-0.04}^{+0.06}_{-0.05}$
		$\arg(q/p)(^\circ)$	$-6 \pm 11 \pm 3^{+3}_{-4}$

No evidence of CPV

Study of time-integrated CPV in D⁺ \rightarrow K⁺K⁻ π ⁺

PRD 87, 052010(2013)

DP analysis has sensitivity to both magnitudes and phases of mixing amplitudes

$$A(\cos(\theta_{\rm CM})) \equiv \frac{N_{D^+}/\epsilon_{D^+} - N_{D^-}/\epsilon_{D^-}}{N_{D^+}/\epsilon_{D^+} + N_{D^-}/\epsilon_{D^-}}$$

$$A_{CP} \equiv \frac{A(\cos(\theta_{\rm CM})) + A(-\cos(\theta_{\rm CM}))}{2}$$

Detector asymmetry is taken into account. D^+/D^- from M_D fit

Model independent (4 DP regions)

Dalitz plot region	$N(D^+)$	$\epsilon(D^+)$ [%]	$N(D^{-})$	$\epsilon(D^-)[\%]$	$A_{CP}[\%]$
(A) Below K [*] (892) ⁰	1882 ± 70	7.00	1859 ± 90	6.97	$-0.7 \pm 1.6 \pm 1.7$
(B) K [*] (892) ⁰	36770 ± 251	7.53	36262 ± 257	7.53	$-0.3 \pm 0.4 \pm 0.2$
(C) $\phi(1020)$	48856 ± 289	8.57	48009 ± 289	8.54	$-0.3 \pm 0.3 \pm 0.5$
(D) Above $\bar{K}^{*}(892)^{0}$ and $\phi(1020)$) 25616 ± 244	8.01	24560 ± 242	8.00	$1.1\pm0.5\pm0.3$

Model dependent

 $\cos(\theta_{\rm CM})$

Resonance	r_{CP} (%)	$\Delta \phi$ (°)
$K^{*}(892)^{0}$	0. (FIXED)	0. (FIXED)
$\phi(1020)$	$0.35^{+0.82}_{-0.82}\pm0.60$	$7.43^{+3.55}_{-3.50}\pm2.35$
$\bar{K}_{0}^{*}(1430)^{0}$	$-9.40^{+5.65}_{-5.36}\pm4.42$	$-6.11^{+3.29}_{-3.24}\pm1.39$
NR	$-14.30^{+11.67}_{-12.57}\pm5.98$	$-2.56^{+7.01}_{-6.17} \pm 8.91$
$\kappa(800)$	$2.00^{+5.09}_{-4.96} \pm 1.85$	$2.10^{+2.42}_{-2.45} \pm 1.01$
$a_0(1450)^0$	$5.07^{+6.86}_{-6.54} \pm 9.39$	$4.00^{+4.04}_{-3.96} \pm 3.83$

 $A_{CP} = (0.37 \pm 0.30 \pm 0.15)\%$

ACP in $D^0 \rightarrow \pi^0 \pi^0$ and $D^0 \rightarrow K^0_{\ s} \pi^0$

- Flavor tag with pion sign $D^{*+} \to D^0 \pi^+_{slow}$
- A_{CP} from corrected raw assymetry

$$A_{\rm rec} = \frac{N_{\rm rec}^{D^{*+} \to D^0 \pi_s^+} - N_{\rm rec}^{D^{*-} \to \overline{D}^0 \pi_s^-}}{N_{\rm rec}^{D^{*+} \to D^0 \pi_s^+} + N_{\rm rec}^{D^{*-} \to \overline{D}^0 \pi_s^-}}$$
$$A_{\rm raw} = A_{CP} + A_{FB} + A_{\epsilon}^{\pi_{\rm slow}} \ (+ A_{\rm mat}^{K^0})$$

- $D^0/\bar{D^0}$ yields from fit to ΔM in $(\cos\Theta^*, p_T^{\pi_s}, \cos\theta_{\pi_s})$
- Results consistent with 0

$$A_{CP}^{\pi^0\pi^0} = (-0.03 \pm 0.64 \pm 0.10)\%$$
$$A_{CP}^{K_S^0\pi^0} = (-0.21 \pm 0.16 \pm 0.07)\%$$

PRL 112, 211601(2014)

KEKB upgrade

Summary

- -Data of CPV in B and D mesons are well described by SM via the CKM mechanism
- -Angles of Unitarity triangle have been measured with high accuracy (<1°, ~4°, ~8°)
- -B-factories continue to analyse full data sets
- -Search for CPV (and NP) is performed in penguin dominated charmless decays
- -Search of CPV continues in D decays
- -Even more exciting results will be obtained after Belle II at superKEKB will start