Phenomenological implications of charged lepton flavour and CP violation

Toru Goto (KEK)

IPA2014, 18-22 Aug 2014, Queen Mary Univ. of London

In the Standard Model (Weinberg's "model of leptons"), the lepton number is conserved for each generation (perturbatively).

• One Higgs doublet, massless (Weyl) neutrinos.

Lepton flavour is known to be violated.

• ν oscillation \rightarrow mass² splittings & mixing angles determined.

Charged LFV (observable in near future) = signal of Beyond the SM.

Great experimental improvements in recent years:

- Higgs boson found: $m_h \simeq 126 \text{ GeV} \text{ [ATLAS/CMS]}.$
- SUSY limits raised: $m_{\tilde{g}} > 1.4 \text{ TeV}, m_{\tilde{q}} > 1.8 \text{ TeV}$ [ATLAS/CMS].
- $B_s \rightarrow \mu^+ \mu^-$ observed: $B \simeq 2.9 \times 10^{-9}$ [LHCb/CMS].
- ν mixing angle θ_{13} is measured: $\sin^2 2\theta_{13} \simeq 0.089$ [Daya Bay].

•
$$\mu \rightarrow e \gamma$$
 limit improved: B < 5.7 × 10⁻¹³ [MEG].

No BSM signal so far \Rightarrow stronger constraints are given in many places.

Questions:

- How much space is remaining for sizable cLFV?
- What are promising observables?

cLFV processes:

	$\mu ightarrow e$	$ au o \mu$	$\tau \rightarrow e$
γ	$\mu ightarrow e \gamma$	$\tau \to \mu\gamma$	$\tau \to e\gamma$
$\ell \bar{\ell}$	$\mu \rightarrow e e e$	$ au o \mu \mu \mu$	au ightarrow e e e
		$\tau ightarrow \mu e^+ e^-$	$\tau \to e \mu^+ \mu^-$
$q \overline{q}$	$\mu N \to e N$	$ au ightarrow \mu$ hadrons	au ightarrow e hadrons

• Z, h decays:
$$Z \to e^{\pm} \mu^{\mp}$$
, $h \to \mu^{\pm} \tau^{\mp}$, ...

• $\Delta LF > 1$: $\mu^+ e^- \leftrightarrow \mu^- e^+$, $\tau^+ \rightarrow \mu^- e^+ e^+$, ...

• LFV & FCNC:
$$K_L \rightarrow \mu e, B_s \rightarrow \tau \mu, \cdots$$

BSM models introduce new particles and interactions.

Effects on cLFV are model/process dependent.

Examples shown in the following:

- SUSY type I seesaw model
- Littlest Higgs model with T-parity
- Radiative neutrino mass model

Supersymmetry: still atractive candidate of BSM (GUT, DM, \cdots).

MSSM = SM + SUSY (superpartners, interactions)+ extra Higgs (type-II 2HDM) + SUSY breaking.

SUSY flavour problem [Ellis & Nanopoulos, 1982]

- In geneal MSSM (MSSM-124) \rightarrow quark/lepton flavour violations in SUSY breaking uncontrolable.
 - Squark/slepton mass matrices,
 - \triangleright Trilinear scalar couplings ("A"-terms).

Motivates flavour-blind SUSY breaking (mediation) mechanisms

- minimal supergravity (mSUGRA, CMSSM),
- ullet gauge mediation, anomaly mediation, \cdots

High-energy superpotential: Yukawa couplings & ν_R Majorana masses.

$$W_{\text{lepton}}^{[\text{high}]} = Y_E^{ij} E_i^c L_j H_1 + Y_N^{ij} N_i^c L_j H_2 + \frac{1}{2} M_{\nu}^{ij} N_i^c N_j^c \,.$$

Low-energy effective superpotential: $N_i^c \ni \nu_{Ri}^c$ integrated out.

$$W_{\text{lepton}}^{[\text{low}]} = Y_E^{ij} E_i^c L_j H_1 - \frac{1}{2} \kappa_{\nu}^{ij} (L_i H_2) (L_j H_2).$$

- Seesaw relation (tree level): $\kappa_{\nu} = Y_N^{\mathrm{T}} M_{\nu}^{-1} Y_N$.
- Light neutrino mass matrix: $m_{\nu}^{ij} = -\kappa_{\nu}^{ij} \langle h_2 \rangle^2$.

Parameter counting

- 9 in κ^{ij}_ν: 3 masses, 3 mixing angles & 3 phases
 > 2 mass² splittings & 3 mixing angles measured.
- 18 in M_{ν} and Y_N . \Rightarrow 9 free parameters.

Soft SUSY breaking terms

$$\begin{aligned} -\mathcal{L}_{\text{soft}}^{[\text{high}]} &= (m_L^2)_{ij} \tilde{\ell}_{Li}^{\dagger} \tilde{\ell}_{Lj} + (m_E^2)_{ij} \tilde{e}_{Ri}^* \tilde{e}_{Rj} + (m_N^2)_{ij} \tilde{\nu}_{Ri}^* \tilde{\nu}_{Rj} \\ &+ \left(A_E^{ij} \tilde{e}_{Ri}^* \tilde{\ell}_{Lj} h_1 + A_N^{ij} \tilde{\nu}_{Ri}^* \tilde{\ell}_{Lj} h_2 + \frac{1}{2} \tilde{m}_{\nu}^{2ij} \tilde{\nu}_{Ri}^* \tilde{\nu}_{Rj}^* + \text{H.c.} \right) \\ &+ (\text{squarks}) + (\text{Higgs masses}) + (\text{Gaugino masses}). \end{aligned}$$

mSUGRA scenario:

- $m_L^2 = m_E^2 = m_0 1$, $A_E = A_0 Y_E$: no cLFV at GUT scale μ_G .
- Below μ_{G} , flavour dependent quantum corrections to the slepton mass matrices are induced by Yukawa interactions [Borzumati & Masiero, 1986].

SUSY parameters fixed, ν_R parameters varied:

 ν_R parameters fixed, SUSY parameters varied:

• $M_{\nu_R} \propto 1 \Rightarrow \tau$ LFV small under $\mu \to e \gamma$ constraint.

Dipole dominance

• In a wide class of SUSY models/parameter regions, dominant contribution to cLFV processes appears in $\tilde{\nu}_i$

$$\mathcal{O}_{\gamma L,R} = \bar{\ell'} \sigma^{\mu\nu} \ell_{L,R} F_{\mu\nu}.$$

- ▷ Large chirality flipping sources (tan β enhancement).
- \Rightarrow Relations among branching fractions derived:

$$\begin{split} & \frac{\mathsf{B}(\mu \to e\,e\,e)}{\mathsf{B}(\mu \to e\,\gamma)} ~\simeq~ \frac{\alpha}{3\pi} \left[\log \frac{m_{\mu}^2}{m_e^2} - \frac{11}{4} \right] \simeq 6 \times 10^{-3} \,, \\ & \frac{\mathsf{B}(\mu \,\mathsf{AI} \to e\,\mathsf{AI})}{\mathsf{B}(\mu \to e\,\gamma)} ~\simeq~ 2 \times 10^{-3} \quad \text{(depends on nucleus)} \,, \\ & \frac{\mathsf{B}(\tau \to \mu \,e^+ \,e^-)}{\mathsf{B}(\tau \to \mu \,\gamma)} ~\simeq~ \frac{\alpha}{3\pi} \left[\log \frac{m_{\tau}^2}{m_e^2} - 3 \right] \simeq 10^{-2} \,, \qquad etc. \end{split}$$

Littlest Higgs model with T-parity (LHT)

In order to suppress radiative corrections to the Higgs boson mass...

- Spontaneously broken global symmetry is introduced; SM Higgs boson is accommodated as a pseudo Nambu-Goldstone boson.
- Gauge symmetry is arranged so that one-loop correction to the Higgs boson mass is suppressed.

Littlest Higgs: SU(5)/SO(5) nonlinear σ model [Arkani-Hamed *et al.*, 2002]

global:	SU(5)	$\stackrel{f}{\Rightarrow}$	<i>SO</i> (5)
gauged:	$[SU(2) \times U(1)]_1 \times [SU(2) \times U(1)]_2$	$\stackrel{f}{\Rightarrow}$	$SU(2) \times U(1)$ SM electroweak

- NG bosons in $SU(5)/SO(5) \supset SM$ Higgs doublet.
- T-parity: $[SU(2) \times U(1)]_1 \stackrel{\mathsf{T}}{\longleftrightarrow} [SU(2) \times U(1)]_2 \Rightarrow (g,g')_1 = (g,g')_2.$

LHT

- T_{\pm} : "top partners". Cancels top one-loop correction to Higgs mass.
- Masses of T-odd particles and the "top partners" = O(f) = O(TeV).
- Mixing matrices $V_{Hd}V_{He}$: independent of CKM, PMNS.

$$d^{j} \xrightarrow{(V_{Hd})_{ij}} q^{i}_{H} \qquad e^{j} \xrightarrow{(V_{He})_{ij}} \ell^{i}_{H}$$
$$\overset{W_{H}, Z_{H}, A_{H}}{\overset{W_{H}, Z_{H}, A_{H}}}$$

LFV in LHT

- LFV \Leftarrow T-odd particle loops only.
- Interactions of W_H , Z_H , A_H and T-even (SM) quarks/leptons are left-handed only.

 LFV in LHT: $au
ightarrow \mu$

[Goto, Okada & Yamamoto, '11]

LFV in LHT: $\mu \rightarrow e$

Updated limit: $B(\mu \to e \gamma) < 5.7 \times 10^{-13}$ [MEG, 1303.0754].

LFV in LHT

• The region where both $\tau \rightarrow \mu$ and $\tau \rightarrow e$ are large is excluded due to the constraint by $\mu \rightarrow e$.

• Similar in SUSY case.

Three-loop neutrino mass model

[Aoki, Kanemura & Seto, 0807.0361]

- Neutrino masses \leftarrow higher loops.
- $\bullet\, \sim {\rm TeV}$ scale new particles:
 - ▷ extra Higgs doublet,
 - \triangleright SU(2) singlet scalars S^{\pm} , η^{0} ,
 - \triangleright right-handed neutrinos $N_R^{1,2}$.
- $Z_2 \times Z_2$ discrete symmetry is arranged so that one- and two-loop contributions to ν masses are forbidden.

Three-loop neutrino mass model

• $\bar{e}_R^c N_R^{\alpha} S^+$ coupling ~ $O(1) \gg \mu$ and τ couplings.

[Aoki, Kanemura & Yagyu, 1102.3412]

Conclusion

Various possibilities in charged lepton flavour violation observables are widely open.

- Many BSM models predict LFV signals measurable in near future.
- Predictions are highly model dependent.

 $\triangleright \ \mu \rightarrow e \ \text{VS.} \ \tau \rightarrow \mu \ \text{VS.} \ \tau \rightarrow e.$

▷ Radiative vs. leptonic vs. hadronic.

Experiments play complementary roles to each other.

• Measurements of many observables are necessary to understand flavour structure in the lepton sector.

Waiting for "First observation of cLFV in ???".