Implications of results of non-SM searches at the LHC and low energy colliders

Jessie Shelton U. Illinois, Urbana-Champaign

Interplay of Particle and Astroparticle Physics August 22, 2014

Jessie Shelton U. Illinois, Urbana-Champaign

Interplay of Particle and Astroparticle Physics August 22, 2014

THE WIMP MIRACLE

Thermal freezeout:

THE WIMP MIRACLE

- WIMP miracle is really a statement about perturbative thermal relics:
 - upper bound on $m: g^2 < 4\pi$

 $\Rightarrow m \lesssim 40 \,\mathrm{TeV}$

 lower bound on *m*: freezeout must happen when DM is relativistic

 $\Rightarrow m \gtrsim 10 \,\mathrm{eV}$

THERMAL FREEZEOUT

- Three possibilities:
 - DM annihilates to SM via SM mediators
 - sharply predictive

THERMAL FREEZEOUT

Three possibilities:

- DM annihilates to SM via SM mediators
 - sharply predictive
- DM annihilates to SM via new mediators
 - lower bound on couplings from freezeout

THERMAL FREEZEOUT

Three possibilities:

- DM annihilates to SM via SM mediators
 - sharply predictive
- DM annihilates to SM via new mediators
 - lower bound on couplings from freezeout
- DM annihilates to additional hidden sector states

DARK FREEZEOUT

Mediator couplings to SM can be parametrically small

- Leading couplings at low energy:
 - Higgs portal $\mathcal{L}_{int} = \lambda s^2 |H|^2$
 - Vector portal $\mathcal{L}_{int} = \epsilon B_{\mu\nu} V^{\mu\nu}$

DARK FREEZEOUT

 Dark matter freezeout proceeds more or less independently of SM until mediator ultimately decays

 $N_{\nu}|_{Planck+D/H} = 3.28 \pm 0.28$

 $N_{\nu}|_{SPT} = 3.85 \pm 0.62$ $N_{\nu}|_{Planck} = 3.36 \pm 0.33$

Good news: even very small couplings to the SM can allow the mediator to decay

 $\mathcal{L}_{int} = \epsilon V_{\mu\nu} B^{\mu\nu}$

BBN: $\tau \lesssim 1 \sec$

 $\epsilon\gtrsim 10^{-12}$

Bad news: lower end of allowed range still well out of reach for terrestrial experiments

• Good news: generic GUT-scale origin gives an accessible range of ϵ

 $\propto \frac{g_Y g_D}{16\pi^2} \ln \left(\delta_{GUT}\right) \sim 10^{-6} - 10^{-3}$

Bad news: other scenarios can motivate smaller values

KINETIC MIXING

[Exotic Higgs Working Group (Curtin, JS, et al.); Curtin, Essig, Gori, JS; Falkowski, Vega-Morales]

KINETIC MIXING

[Hoenig, Samach, Tucker-Smith]

KINETIC MIXING

Higgs portal coupling: separate window into dark sector

HIGGS MIXING

• Current limits on $h \rightarrow Z_D Z_D$ from recasting 8 TeV data

[Exotic Higgs Working Group (Curtin, JS, et al.)]

HIGGS MIXING

Extremely clean signal: good estimator of best-case Higgs portal reach at hadron machines

[Curtin, Essig, Gori, JS]

HIGGS MIXING

Extremely clean signal: good estimator of best-case Higgs portal reach at hadron machines

[Curtin, Essig, Gori, JS]

BOUNDS ON HIGGS MIXING

- Unfortunately most exotic Higgs decays are a much more difficult target, especially all-hadronic
 - E.g.: $h \rightarrow ss \rightarrow 4b$
 - low-p_T jets: Wh associated
 production, boosts, b-tagging
 - 95% CL sensitivity: $Br(h \rightarrow 4b) = 0.1$ with 300 fb⁻¹ at 14 TeV

INTERPLAY

- A simple model of dark freezeout:
 - two state hidden sector: ψ , Z_D
 - (HS Higgs mechanism)
 - *s*-wave thermal freezeout sets α_D
 - kinetic mixing allows Z_D to decay promptly on cosmological times

Indirect detection

 thermal cross-section (*bb*, *WW*) now becoming observable in gamma rays for DM masses ~10s of GeV

[Martin, JS, Unwin]

Direct detection

• given α_D , LUX constrains kinetic mixing

 $\log_{10} \epsilon$

[Martin, JS, Unwin]

Collider searches

 Recall: LHC searches less sensitive than LUX in this mass range

- Higgs portal mediators are a different story
 - again, simple two-state hidden sector: ϕ , *s*
 - (HS Higgs mechanism)
 - s-wave thermal freezeout requires scalar dark matter
 - scalar mediator decays via Higgs portal

Direct detection

 DM-nucleon scattering suppressed by small SM Yukawas

•
$$\mathcal{L}_{mix} = \epsilon s^2 |H|^2$$

[Martin, JS, Unwin]

Colliders

- Best limits from exotic Higgs decays
- Constraint on total exotic
 branching fraction assuming
 SM production
- (direct observation will be hard: hadronic)
- for $m_{DM} > m_h/2$, much harder

- A harder set of signals:
 - consider fermionic dark matter annihilating to scalars
 - *p*-wave freezeout: annihilation signal from halo is gone
 - scalar mediator still via Higgs portal
 - relative sensitivities of direct detection, Higgs decays are similar

Need to think about additional signals!

adiabatic DM spikes (Milky Way super-massive black hole)

- astrophysical uncertainties
 very large: galactic center
 environment, formation
 history
- velocity dispersion in spike approaches freezeout values
- potentially observable annihilation signals: point source

CONCLUSIONS

- Dark freezeout is a simple scenario
 - that predicts new particles and interactions at accessible mass scales
 - but with parametrically small couplings
- Discovery reach at LHC, future hadron colliders from luminosity as well as energy
- Interplay of astrophysical and terrestrial signals
 - signals depend on: portal to SM, mass scale