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1. Motivation
• Fundamental building blocks of matter:
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• Neutrino mass: the central issue of neutrino physics
– Tiny mass but huge amount
– Influence to Cosmology: evolution, large scale, structure, …
– An evidence beyond the Standard Model

• Neutrino oscillation: a great method to probe the mass 
νe νeνm νm

Oscillation 
b bili

P(νe-> νm)  = sin2(2θ) sin2(1.27 Δm2L/E)

Oscillation Oscillation 
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probability： amplitude frequency
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θ13:not exactly known before DYB
• Goal：measure θ13 precisely ?

ν1θ l i ill i 1

ν2

ν

θ12 solar neutrino oscillation 

θ23atmospheric neutrino oscillation
θ13  ?

• Neutrino mixing matrix:
ν3

Unknown : θ13, δ + 2 Majorana phases

“At h i ” Sh b li (DYB “S l ”“Atmospheric”
SK, K2K, T2K, MINOS,...

Short baseline reactor (DYB, 
RENO, DoubleChooz)

Long-baseline accelerator (T2K, 

“Solar”
KamLAND, SNO, SK,...
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Measuring θ13 with Short Baseline Exp.

L is small (L < 5km)

Short baseline reactorShort-baseline reactor 
neutrino experiments
- Disappearance of electron 

KamLAND

pp f
antineutrinos from a reactor
- Daya Bay, RENO, Double KamLANDChooz
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Reactor Measurement PrincipleNear-Far Relative Measurement

Measured 
far/near ratio Target Detection 

ffi i

baseline 
ratio Survival 

b bilitfar/near ratio 
of rates

g
Mass ratio

efficiency 
ratio

probability
sin2(2θ13)

 Relative far detector/near detector measurement – reactor flux   
uncertainties largely cancel
 Identical detectors to cancel detector-related uncertainties
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2. The Daya Bay Collaboration
Founded in 2006

~230 collaborators from 41 institutions

North America (17)
Brookhaven Natl Lab, CalTech, Illinois Institute of Technology,
Iowa State, Lawrence Berkeley Natl Lab, Princeton, Rensselaer 

Polytechnic Siena College UC Berkeley UCLA Univ of Cincinnati

Asia (21)
Beijing Normal Univ., CNG, CIAE, Dongguan Polytechnic,  ECUST, 

IHEP, Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., 
Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Polytechnic, Siena College, UC Berkeley, UCLA, Univ. of Cincinnati, 

Univ. of Houston, UIUC, Univ. of Wisconsin, Virginia Tech, William 
& Mary, Yale 

South America (1)
Catholic Univ of Chile

Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, 
Xian Jiaotong Univ., Zhongshan Univ., Chinese Univ. of Hong Kong, 

Univ. of Hong Kong, National Chiao Tung Univ., National Taiwan 
Univ., National United Univ.

Europe (2) 
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Catholic Univ. of Chile
Charles University, JINR Dubna
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3. Experiment Layout and Detector Design

• Relative measurement to cancel Correlated Syst Err

• 6 reactor cores (17.4 GW  thermal 
power) to reduce Statistical Err.

Relative measurement to cancel Correlated Syst. Err. 
– 2 near sites, 1 far site 

• Multiple AD modules at each site to reduce Uncorrelated Syst. Err.  
F 4 d l 2 d l– Far: 4 modules，near: 2 modules

• Multiple muon detectors to reduce veto efficiency uncertainties
– Water Cherenkov： 2 layers 
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– RPC： 4 layers at the top + telescopes
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Anti-neutrino Detector (AD) 
 Three zones modular structure: 

I.   target: Gd-loaded scintillator, 1.6m,20t
II γ catcher: normal scintillator 45cm 20tII. γ -catcher: normal scintillator,45cm, 20t
III. buffer shielding: mineral oil ,45cm,40t

 192 8” PMTs/module
 Two optical reflectors at the top and the 

bottom, Photocathode coverage increased from 
5 6% to 12%5.6% to 12%

Total weight: ~110 t

Relative energy scale 
Unc. 0.4%

Relative 
neutrino 
detectionRelative neutron 

energy selection 0.11%

detection 
efficiency 

Unc.
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Neutrino Detection: Gd-loaded Liquid Scintillator

nepe   pe
t  28 ms(0.1% Gd)

n + p  d  + γ (2.2 MeV)p γ ( )
n + Gd  Gd* + γ(8MeV)

Neutrino Event Selection: 
Coincidence in time, space and energy
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Muon Veto Detector 
• Water Cerenkov detector

– Two layers, separated by 
Tyvek/PE/Tyvek filmTyvek/PE/Tyvek film

– 288 8-inch PMTs for near halls 
384 8-inch PMTs for the far hall

k d• Water Cerenkov detector 
– High purity de-ionized water in 

pools also for shielding 
– First stage water production in 

hall 4
– Local water re-circulation & 

purification

• RPCsTwo active cosmic-muon veto’s RPCs
– 4 layers/module
– 54 modules/near hall, 81 

modules/far hall

Water Cerenkov: Eff.>97%
RPC Muon tracker: Eff. > 88%
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modules/far hall
– 2 telescope modules/hall
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4. Operation History 
imeline of Detector Installation
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Data Periods
Two Detector Comparison: 
- 90 days (9/23-12/23/2011)

NIM A685 (2012) 78 97 Xi 1202 6181

EH1: Daya Bay Near

- NIM A685 (2012) 78-97 arXiv:1202:6181

6-AD data takingg
- 217 days (12/24/2011 – 7/28/2012)
- PRL 108 171803 (2012) arXiv:1203:1669 [55 days]

CPC 37 011001 (2013) arXiv:1210 6327 [139 days]

EH2: Ling Ao Near

- CPC 37 011001 (2013) arXiv:1210.6327 [139 days]
- PRL 112 061801 (2014) arXiv:1310:6732 [217 days]

Shutdown: installed last 2 ADs, special calibrations

8 AD data taking

EH3: Far

8-AD data taking
- since 10/19/2012
Most recent oscillation results: combined 6 AD
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And 8 AD period: 621 days
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5. Antineutrino (IBD) selection
Selection:
- Reject PMT Flashers
- Prompt Positron: 0.7 MeV < Ep < 12 MeVPrompt Positron: 0.7 MeV  E

p
 12 MeV

- Delayed Neutron: 6.0 MeV< Ed   < 12 MeV
- Capture time: 1μs < Δt < 200 μs

M V- Muon Veto:
Pool Muon (>12 hit PMTs):  Reject 0.6 ms
AD Muon (>3000 p.e.;>20 MeV): Reject 1 ms

IBD

AD Shower Muon (>3 × 105 p.e.; >2.5 GeV): Reject 1s
- Multiplicity: only select isolated candidate pairs
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IBD Rate vs Time
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>1 million antineutrino interactions! (150k at far site)
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Far vs. Near6. θ13 Measurement Results

The observed relative rate 
deficit and relative 

spectrum distortion arespectrum distortion are 
highly consistent with 

oscillation interpretation
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θ13 Oscillation Analysis using n-Captures on Gd
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θ13 Oscillation Analysis using n-Captures on H

190 days
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sin22θ13 Measurement Timeline
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7. Others: Absolute Reactor       Fluxe
o Measured IBD events (background subtracted) in each detector are normalized to 

cm2/GW/day (Y0) and cm2/fission (σf).

3-AD (near sites) 
measurement:

Y0 = 1.553×10-18

σf = 5 934×10-43

measurement:

e

σf  5.934×10

o Compare to reactor flux models:  Measured / Predicted IBD candidates

Data/Prediction (Huber+Mueller) Uncertainty

0.947 ± 0.022

Data/Prediction (ILL+Vogel)

statistics 0.2%

sin22θ13 0.2%

reactor 0.9%
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0.992 ± 0.023 detector efficiency 2.1%

combined 2.3%
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Daya Bay’s reactor antineutrino flux measurement is 
consistent with previous short baseline experiments.

o Global comparison of measurement and prediction (Huber+Mueller):

Daya Bay
R = 0.947 ± 0.022

Previous average

R = 0 943 ± 0 008 (exp )R = 0.943 ± 0.008 (exp.)

o Effective baseline of Daya Bay:  Leff = 573mff

 Flux weighted detector-reactor distances of 3 ADs in near sites only.

o Effective fission fractions αk of Daya Bay   235U: 238U: 239Pu: 241Pu = 0.586: 0.076: 0.288: 0.050

 Mean fission fractions from 3 ADs in near sites only.
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 Mean fission fractions from 3 ADs in near sites only. 
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7. Others: Observable      spectrume
Extract a generic observable reactor antineutrino spectrum Sobs_ν(Eν) :
Supplies data outside [2, 8] MeV and could be used for flux and spectrum prediction.

Integral of Daya Bay spectrum = σf

 Compare DYB spectrum and Huber+Mueller Prediction :   Same rate deficit as 
flux measurement, and same shape deviation
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flux measurement,  and same shape deviation
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8. Summary
 Daya Bay has measured:

By the end of 2017, we expect the precision on both 
parameters to reach 3%parameters to reach 3%.

 We have an independent oscillation measurement using 
nH capturesnH captures

 The absolute flux measurement is consistent with previous 
short baseline measurements.
σf = ( 5.934 ± 0.136 ) × 10-43 (cm2/fission)
235U: 238U: 239Pu: 241Pu = 0.586: 0.076: 0.288: 0.050

 A generic observable reactor antineutrino spectrum 
(cm2/fission/MeV) is extracted from the measured positron 
spectrum to be used for predictions.
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The End

Thanks for your attention！y
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Underground Labs 2012-03-08

Overburde
n（MWE）

R
（Hz/m

E
（GeV）

D1,2
(m)

L1,2
(m)

L3,4
(m)（ ） （ /

2）
（ ） ( ) ( ) ( )

EH1 250 1.27 57 364 857 1307

EH2 265 0 95 58 1348 480 528
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EH2 265 0.95 58 1348 480 528

EH3 860 0.056 137 1912 1540 1548
26



Automatic Calibration System 2012-03-08

• Three Z axis:
– One at the center

• For time evolution energy scale non linearity• For time evolution, energy scale, non-linearity… 
– One at the edge

• For efficiency, space response
– One in the g-catcher

• For efficiency, space response
• 3 sources for each z axis:• 3 sources for each z axis:

– LED 
• for T0, gain and relative QE0, g Q

– 68Ge (20.511 MeV ’s) 
• for positron threshold & non-linearity… 

241Am 13C + 60Co (1 17+1 33 MeV ’s)– 241Am-13C + 60Co (1.17+1.33 MeV ’s)
• For neutron capture time, …
• For energy scale, response function, …
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• Once every week:3 axis, 5 points in Z, 3 sources



Side-by-side Comparison 2012-03-08

• Expected ratio of neutrino events from AD1 and 
AD2: 0 981AD2:  0.981

• Measured ratio:  0.987  0.008(stat)  0.003 

 The ratio is not 1 
because of targetbecause of target 

mass, baseline, etc.
 This final check shows 

that systematic errors 
are under control

School of Nuclear Science and Technology28


