

Mario Pelliccioni

Istituto Nazionale di Fisica Nucleare - Torino

Queen Mary University of London - April 1st 2021

The story so far

Clear signature of a particle with m = 125 GeV Observed in many final states Compatible with SM Higgs boson within 10-20% precision (depends on final states and observables)

Measuring properties

Extensive physics program to measure properties of h_{125} up to the end of HL-LHC Will bring precision down to a few % in most cases

Not the only way to test the Higgs sector of the SM!

Problems

Issues with the SM (that *could* be fixed/observed by the Higgs sector)

- Higgs mass
- Dark matter
- Neutrino masses
- Hierarchy problem
- Large number of parameters

Looking elsewhere

- Many BSM theories require modifications to Higgs sector modelling
 - Most of SUSY incarnations
 - "Non minimal" SM
- Large overlap of signatures with searches not related to Higgs sector
- Common framework and benchmarks with properties of h₁₂₅ (for example hh production)

Definition of exotic Higgs obviously arbitrary Review studies of interest (for physics or techniques) Disclaimer: from a CMS member perspective

Exotic: signature/group of signatures not present in SM predictions

Two main routes:

- Search for new Higgs bosons
- Search for new decays of h₁₂₅

Higgs multiplets

The Higgs sector in the SM

In SM, minimal request is one electroweak doublet

$$\phi = \frac{1}{\sqrt{2}} \left(\begin{array}{c} \phi_1 + i\phi_2 \\ \phi_0 + i\phi_3 \end{array} \right)$$

- Necessary to provide mass (L polarization) to W^{\pm} and Z
- The extra d.o.f. originates the Higgs scalar

Many of the BSM scenarios deal with extra singlets/doublets/triplets

Next-to-minimal-ish: 2HDM

Additional electroweak doublet

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix} \quad \phi' = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_5 + i\phi_6 \\ \phi_7 + i\phi_8 \end{pmatrix}$$

5 degrees of freedom available

→ CP-even (h, H) CP-odd (A), H[±]

With few assumptions, free parameters of the theory: m_{h} , m_{H} , m_{A} , m_{H+} , $\tan\beta$, α

 α is the mixing parameter between h and H

$$\tan(\beta) = \frac{\langle \varphi \rangle_0}{\langle \varphi' \rangle_0}$$

Somewhat problematic to produce common benchmarks with all these parameters

 \rightarrow Extensive work of theory/experiment within the LHC HXSWG

Parameters can be constrained in particular incarnations of 2HDM

 \rightarrow In MSSM, d.o.f. reduced to two parameters $\rightarrow m_A^{}$ and tan β Personal note: very "mild" BSM if no SUSY \rightarrow sideways SM!

Couplings in 2HDM

All mass eigenstates couple to both h and H in all configurations, but couplings depend on model

	Type I	Type II	Lepton-specific	Flipped
ξ_h^u	$\cos lpha / \sin eta$	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$	$\cos lpha / \sin eta$
ξ^d_h	$\cos lpha / \sin eta$	$-\sin lpha / \cos eta$	$\cos lpha / \sin eta$	$-\sin lpha / \cos eta$
ξ_h^ℓ	$\cos lpha / \sin eta$	$-\sin lpha / \cos eta$	$-\sin lpha / \cos eta$	$\cos lpha / \sin eta$
ξ^u_H	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$
ξ^d_H	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$
ξ_H^ℓ	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$	$\cos lpha / \cos eta$	$\sin lpha / \sin eta$

Different scaling of up and down fermions

Different scaling of leptons and quarks Different scaling of up and down quarks, leptons flipped

 $g_{h,VV} \propto \sin(\beta - \alpha)$

 $g_{H,VV} \propto \cos(\beta - \alpha)$

Typical topologies

Signatures depend on mass hierarchy

High mass:

• $H \rightarrow hh, H^{\pm} \rightarrow W^{\pm}Z, H \rightarrow AZ, A \rightarrow Zh, H \rightarrow tt \dots$

Mid-high mass:

+ A/H \rightarrow TT/bb/µµ/WW/ZZ

Low mass:

- $A \rightarrow TT/bb/\mu\mu$
- Overlap with NMSSM (see later)

$A/H \rightarrow TT$

- Search in the $T_{lep}T_{had}$ and $T_{had}T_{had}$ in range [0.2,2.5] TeV
- \rightarrow Single lepton triggers ~ 25 GeV, single T around 150 GeV

"Bump" hunting over the transverse mass spectrum defined with missing energy

$$m_T^{\text{tot}} = \sqrt{(p_T^{\tau_1} + p_T^{\tau_2} + E_T^{\text{miss}})^2 - (p_T^{\tau_1} + p_T^{\tau_2} + E_T^{\text{miss}})^2}$$

N_{bjet} categorization to exploit different production mechanisms

\rightarrow Dependence of	on tanß fo	r both b	and T
e e periorene e			

Process	Generator	PDF	UEPS	Cross-section o
$ggF \\ bbH \\ W+jets \\ Z+jets \\ VV/V\gamma^* \\ t\bar{t} \\ Single t$	Powheg-Box v2 [61,62,63,64,65] MG5_aMC@NLO 2.1.2 [68,69] Sherpa 2.2.1 [71] Powheg-Box v1 [61,62,63,75] Sherpa 2.2 Powheg-Box v2 [76,61,62,63] Powheg-Box v2 [84,85,86,61,62,63]	CT10 [66] CT10 NNPDF 3.0 NNLO [72] CT10 NNPDF 3.0 NNLO NNPDF 3.0 NLO NNPDF 3.0 NLO	Рутніа 8.1 [67] Рутніа 8.2 [70] Sherpa 2.2.1 [73] Рутніа 8.1 Sherpa 2.2 Рутніа 8.2 Рутніа 8.2	See text See text NNLO [74] NLO [74] NLO NNLO+NNLL NNLO+NNLL

$A/H \rightarrow TT$

hh production

Can be done non-resonant (self coupling) or resonant

- The latter more relevant in these models

Strong compromise between statistics and purity

A case study: $hh \rightarrow bbZZ$ at CMS

- $Z(II) + Z(\nu\nu/jj)$
- Fit (pseudo)transverse mass in neutrino channel and BDT output in hadronic

Phys. Rev. D 102 (2020) 032003

$hh \rightarrow bbZZ results$

Intermezzo: hh combinations

hh at HL-LHC

CMS-FTR-18-019

Combination shows LHC won't provide a complete picture on di-Higgs physics

Combining into hMSSM

hMSSM:

- h₁₂₅ interpreted as lower mass Higgs boson
- CP conserving Higgs sector
- Superpartners too heavy to contribute to production and decay

Strong limit provided by constraints from ${\rm h}_{\rm 125}$

$H/A \rightarrow TT$ at HL-LHC

General 2HDM combination

Sensitivity strongly dependent on the choice parameters (and solution to ambiguities)

Still missing a full update to RunII of a generic 2HDM interpretation

LHC HXSWG: Yellow Report 4

Collaboration of theory/experiments to produce common guidelines for techniques and interpretation of results

Benchmark scenarios:

 \rightarrow Large fraction dedicated to definition of topologies and parameter space for future searches

 \rightarrow Define ~ 10 scenarios for analyses possible at LHC

 \rightarrow A "wishlist" of what theory wants and experiments can do

https://cds.cern.ch/record/2227475

2HDM + S

Common extension (see for example NMSSM)

Helps solving the "µ-problem"

Add one singlet (2 d.o.f.)

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix} \quad \phi' = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_5 + i\phi_6 \\ \phi_7 + i\phi_8 \end{pmatrix}$$

 $+\phi_S$

Typically searched in a "lower" mass boson in $\mu\mu/TT/bb$

- Of particular interest in $h \rightarrow aa$ decays

$$h/H \rightarrow aa \rightarrow \mu\mu TT$$

Search for collimated dilepton pairs

3.6 < m_a < 21 GeV

Require isolated μ trigger with $p_{_T}$ > 24 GeV

Custom T-pair algo for collimated objects

 \rightarrow allow for a non-isolated μ in one T decay

Final state is $\mu\mu T_{h/e}T_{\mu}$

23

$h/H \rightarrow aa \rightarrow \mu\mu TT$

JHEP 08 (2020) 139

2HDM+S $h \rightarrow$ aa combination

Strong dependence on tan \Box and sign choice for couplings All topologies necessary to fully investigate the spectrum Most are statistically limited

2HDM+S at HL-LHC

CMS-FTR-18-035

Higgs triplets

Higgs sector organized in triplets: a nice way to provide neutrino masses via type-II seesaw mechanism

 \rightarrow Generic forms suffer for large radiative corrections

Georgi-Machacec: two triplets, one real and one complex

corrections preserved via custodial symmetry

Generates two scalars, $H_{1,2}^{+}$, H^{++}

500

1000

m^{ww}_T [GeV]

 $H^{+(+)} \rightarrow$ vector bosons

VBF $H^+ \rightarrow W^+Z$ and $H^{++} \rightarrow W^+W^+$ in leptonic decays Mass degeneracy

 \rightarrow simultaneous search in 200 < m_{H5} < 2000 GeV range

tt, tZq and ZZ backgrounds estimated from data

500

1000

1500

2000

2500

3000

m_{ii} [GeV]

$H^{+(+)} \rightarrow vector bosons$

$H^{+(+)} \rightarrow vector bosons$

Exotic decays of h₁₂₅

LFV in Higgs decays

LFV strongly suppressed in SM

In Higgs decays, mediated by Yukawa couplings $Y_{e\mu}$, $Y_{e\tau}$, $Y_{\mu\tau}$ Scenarios include

- Higgs multiplets
- SUSY
- composite Higgs
- RS extra dimensions

- ...

 $H{\rightarrow}\,\mu e$ strongly constrained by indirect measurements

* concentrate on $H{\rightarrow}\mu {\ensuremath{\mathsf{T}}}$ and et

$H \rightarrow eT, \mu T$

CMS-PAS-HIG-20-009

- Four final states: $l T_{h'}$, $l T_{l'}$
 - Limit DY Z->*ll* contributions
- Samples characterized with BDT that is fitted to extract BR
- Binned in number of jets
- Backgrounds: Z/H \rightarrow TT , Z \rightarrow *ll* , H \rightarrow WW, mis-ID background
 - Use of embedded and ABCD methods for background estimate

CMS-PAS-HIG-20-009

$H \rightarrow eT, \mu T$

$H \rightarrow eT, \mu T$

CMS-PAS-HIG-20-009

Derived from
$$\Gamma(H \to \ell^{\alpha} \ell^{\beta}) = \frac{m_{\rm H}}{8\pi} (|Y_{\ell^{\alpha} \ell^{\beta}}|^2 + |Y_{\ell^{\beta} \ell^{\alpha}}|^2)$$

$H \rightarrow invisible$

 m_{WIMP} [GeV]

Search for missing energy associated with H production

VBF, ZH, WH signatures

							-
	Analysis	\sqrt{s}		Int. luminosity	Observed	Expected	
	Run 2 VBF	13 TeV		36.1 fb ⁻¹	0.37	$0.28\substack{+0.11 \\ -0.08}$	_
	Run 2 $Z(\text{lep})H$	13 TeV		36.1 fb ⁻¹	0.67	$0.39\substack{+0.17 \\ -0.11}$	
	Run 2 $V(had)H$	13 TeV		36.1 fb ⁻¹	0.83	$0.58\substack{+0.23 \\ -0.16}$	
	Run 2 Comb.	13 TeV		36.1 fb ⁻¹	0.38	$0.21\substack{+0.08 \\ -0.06}$	
	Run 1 Comb.	7,8 TeV		4.7, 20.3 fb ⁻¹	0.25	$0.27\substack{+0.10 \\ -0.08}$	
	Run $1 + 2$ Comb.	7,8,13 TeV		4.7, 20.3, 36.1 fb ⁻¹	0.26	$0.17\substack{+0.07 \\ -0.05}$	_
Interpret in the conte	ext of Higgs porta	al models		10 ⁻⁴⁰	$B_{H o inv}^{observed}$ < 0 All limits at).24 90% CL	ATLAS $\sqrt{s} = 7 \text{ TeV}, 4.7 \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$
Translate limit into DI	M-N cross sectio	n in EFT	<u> </u>		New York		Higgs portals
Very competitive and	complementary	search	_{MP-N} [cm ²	10 ⁻⁴²			Wiggs portais Kinggs portais
but many assur	nptions on this p	lot!	3	10 ⁻⁴⁴			···· DarkSide50
Unfortunately, system	natics will limit fo	uture	U	10 ⁻⁴⁶			LUX PandaX-II ···· Xenon1T
prospects of these m	easurements			1	10 10) ² .	10 ³ 10 ⁴

Unfortunately, system prospects of these measurements

$H \rightarrow invisible at HL-LHC$

- CMS-FTR-18-016
- Projections to 3 ab⁻¹ show search limited by systematic uncertainties
- Not the biggest surprise: tough analysis in pp environment, with great experimental challenges ~ 20

Interesting exercise:

- Test scenario with missing mass
 resolution worse by factor 2
 Case of *extreme* PU conditions
- Conclusion:
 - Analysis is flexible enough to yield similar limits with selection re-optimization

$H \rightarrow \phi/\rho + \gamma$

Coupling to first and second generations (and up-type

quarks) for Higgs multiplets test

Greatly suppressed in SM

Experimental difficulty in trigger at LHC

ATLAS: use photon + modified T trigger

Branching Fraction Limit $(95\% \text{ CL})$	Expected	Observed
$\mathcal{B}\left(H ightarrow\phi\gamma ight)$ [10^{-4}]	$4.2^{+1.8}_{-1.2}$	4.8
${\cal B}\left(Z ightarrow \phi\gamma ight)$ [10^{-6}]	$1.3\substack{+0.6\\-0.4}$	0.9
$\mathcal{B}\left(H ightarrow ho\gamma ight)$ [10^{-4}]	$8.4^{+4.1}_{-2.4}$	8.8
$\mathcal{B}\left(Z ightarrow ho\gamma ight)\left[ight.10^{-6} ight. ight]$	33^{+13}_{-9}	25

38

Considerations on future colliders

- Studies emerging to provide more complete view on Higgs perspectives in future colliders
- Fundamental step into decision making process for next generation accelerators
- Many scenarios, difficult to summarize all considerations, but...

Expected relative precision

kappa-0	HL-LHC	LHeC	HE-LHC	ILC ₂₅₀	ILC ₅₀₀	CLIC ₃₈₀	CLIC ₁₅₀₀	CLIC ₃₀₀₀	CEPC	FCC-ee ₂₄₀	FCC-ee ₃₆₅	FCC-ee/eh/hh
κ_W (%)	1.9	0.75	1.0	1.8	0.29	0.86	0.17	0.11	1.3	1.3	0.43	0.15
$\kappa_{Z}(\%)$	1.6	1.2	0.95	0.29	0.23	0.5	0.26	0.23	0.13	0.2	0.17	0.12
κ_{g} (%)	2.4	3.6	1.5	2.3	0.97	2.5	1.3	0.9	1.5	1.7	1.0	0.52
κ_{γ} (%)	1.9	7.5	1.2	6.7	3.4	98 *	5.0	2.2	3.7	4.7	3.9	0.35
$\kappa_{Z\gamma}$ (%)	10.6	s—	4.0	99*	86*	120*	15	6.9	8.2	81*	75 *	0.7
κ_{c} (%)		4.0	—	2.5	1.3	4.3	1.8	1.4	2.2	1.8	1.3	0.95
κ_t (%)	2.8		2.1	_	6.9	_	_	2.6				1.0
κ_b (%)	3.5	2.1	2.3	1.8	0.58	1.9	0.48	0.38	1.2	1.3	0.67	0.45
κ_{μ} (%)	4.6		1.9	15	9.4	320 *	13	5.8	8.9	10	8.9	0.42
κ_{τ} (%)	1.8	3.3	1.3	1.9	0.7	3.0	1.3	0.89	1.3	1.4	0.73	0.49

collider	(1) di-H excl.				
HL-LHC	+00% (50%)	gs: cubic	se	lt-coup	bling
HE-LHC	10-20% (n.a.)				
ILC ₂₅₀	-				
ILC350	-		1	HL-LHC	+LHe
ILC500	27% (27%)		r	570	220
CLIC ₃₈₀	_		N u	570.	520.
CLIC ₁₅₀₀	36% (36%)		κ_d	270.	150.
CLIC ₃₀₀₀	$^{+11}_{7}\%$ (n.a.)		Ks	13.	7.3
FCC-ee ₂₄₀			ĸc	1.2	
FCC-ee ₃₆₅	-				
FCC-ee/eh/hh	5% (5%)				
CEPC	_				

Upper bounds from rarer decays

	HL-LHC	+LHeC	+HE-LHC	+ILC ₅₀₀	+CLIC3000	+CEPC	+FCC-ee ₂₄₀	+FCC-ee/eh/hh
ĸu	570.	320.	420.	330.	430.	290.	310.	280.
ĸd	270.	150.	200.	160.	200.	140.	140.	130.
Ks	13.	7.3	9.4	7.5	9.9	6.6	7.	6.4
ĸc	1.2		0.87		3	measured	directly	

from arXiv:1905.03764

Conclusions

- Since the discovery of h₁₂₅, a rich and varied physics program to test the structure of the Higgs sector
- These studies are complementary both to the understanding of h₁₂₅ and to many different fields outside Higgs physics
- Experimental difficulties can motivate to really push the capabilities of LHC detectors
- So far, no new evidence, BUT the parameter space is vast (and worth exploring)
- Projections show LHC will remain a relevant tool to explore these physics topics until the end of HL-LHC

THANKS!