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Data Science is one of the most popular professions in the last few years, often being 
called a “hyped” job. It’s especially popular in my flat (hi Jake).

• Data science is a pretty new field in IT

• Comprises of solving business problems with code – 

however you want to tackle it

• A few different areas that can be specialised in:

• NLP

• Deep Learning

• Etc.
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Vodafone & 
Telefonica(O2) “Cognitive 
Intelligence”

Google Flights 
uses Machine 
Learning to warn 
users about 
delays, and even 
predict them 
before they’re 
announced.

UberEats uses 
real time 
Machine 
Learning 
models to 
suggest 
restaurants and 
menu items

Uber use Machine 
Learning to predict 
where rider demand and 
driver-partner availability 
will be at various places 
and times in the future. 

Uber use a 
Machine 
Learning model 
to predict ETA 
routing errors 
and then use 
the predicted 
error to make a 
correction, to 
improve 
accuracy and 
user 
experience.

Data Science business use cases range from fraud detection and cyber-security, 
to incident prevention and recommending products



Experimentation is Key in Data Science – the more curious you are, the 
better your results.

• Jupyter notebooks give you a really easy way to interact 

with data

• Quick plots, analysis, and markdown integrated

• Can export it as HTML to chat through



When you’re done with experimentation, you need to make your code 
reproducible by packaging your work

• Once ready to use a model at scale, you need to create a 

python package for it

• This is not optional (most of the time)!

• You can automate a lot with CI/CD but the end product 

should be a callable package to run code against your 

model



• Docker enables developers to produce a reproducible environment 

through a concept called “containers”.

• Traditionally, you set up your env, run your code, then run tests; 

Docker does all of this at once

• Docker provides a standard framework to ship / deploy / scale your 

code

What does this mean? 

Building 1 docker image for a use case (i.e. ROOT Conda) ensures 

identical set-up each time, reducing issues with tertiary versioning etc., 

then overlay your model code and push!

Docker is industry standard for ensuring developers utilise the same exact 
environment, no matter where they are

https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fhub.docker.com%2Fr%2Frootproject%2Froot%2Ftags&data=04%7C01%7Ccarl.stanley%40bt.com%7Cd4c80dd7759f482b134608d8e3c0ea95%7Ca7f356889c004d5eba4129f146377ab0%7C0%7C0%7C637509764996889689%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=%2F%2Bq2Wg1pOH0qkcMVjSB03hNBHnjtybNDH0ap%2FeWwAZk%3D&reserved=0


Docker Hub is the source of all of truth for your images – it’s GitHub for 
containers



Base Image: root-Conda

Add in my analysis

FROM rootproject/root-conda:latest

RUN git pull <my_cool_project>@master
RUN pip install –r requirements.txt

# Stuff to run analysis that takes 1000 lines 
# of code for some reason

ENV IM_COOL=“yes”

ENTRYPOINT[“/usr/src/”, “entrypoint.sh”]

Docker Hub

An Aside – Docker isn’t just useful for data science! It can be used to speed up 
development on any analysis

Ta
g &

 Push

User 1

User 10000

Analysis image 
pull

…

A reusable, scalable version of your analysis that anyone & everyone who 
owns Docker can use.

Benefits
• No more environment issues
• Code is shared automatically when pushed to docker hub
• Gitlab has its own docker hub!!

Outcome



How Code is Run
• From terminal, inside container
• Code often cloned straight from Git

Who can Run the Code
• Anyone with docker

How Tests are Done
• Tests are already done when the container is made
• Can add more tests with pytest if you want

Results
• Shippable product that anyone can use with 1 line

Jupyter Notebook > .py > Docker 
Example

How Code is Run
• In Cells
• Allows for rapid experimentation
• Works quickly and in modular fashion 

Who can Run the Code
• Person with the notebook with GUI

How Tests are Done
• They aren’t

Results
• Quick prototyping
• Interactive shell
• Visual outputs for quick analysis

How Code is Run
• From terminal
• Functional / OOP
• Runs as a package (if you’re good at writing code)

Who can Run the Code
• Anyone with the same env as you
• Projects usually contain a requirements file and a 

README (not always…)

How Tests are Done
• Manually with pytest (if you’ve written them)

Results
• End to end (e2e) process, run all at once
• Open ended regarding deployment

Notebook (.ipynb) Package (.py) Dockerfile



CI can enable trust in your work with less active effort, and CD enables agile 
development and lets developers learn quickly

Continuous 
Integration

• Automated Integration Testing
• Dynamic environment building
• Ensuring reproducible outcomes
• Differential Testing of ML Models
• Automated simple unit testing
• Code linting

Continuous 
Deployment

• Automatic environment creation 
& updating

• Integrated environment 
segregation (dev, test, pre-prod, 
prod) based on Git branches

• Scheduled activities



Data Science isn’t just a modelling career; you can’t claim you’ve made a 
meaningful model until you’re actually helping a business achieve it’s objectives

Dev / Analytics

Test

Pre-production

Production

ToolsGit BranchEnvironment

Feature

Dev_branch

Master

Push to deploy1

1. Maybe

Version control + containers + CI/CD together form a great foundation for agile, reproducible data 
science

• Development is an experimental area where data scientists 
have data and a platform to utilise it (what we have today)

• Test is a place to test integrations and deployments with no 
outside exposure

• Pre-prod is a production clone for agile deployment and 
stakeholder engagement

Environments

•  Build: Builds code and ensures all versioning etc. works (it starts)

• Test: All unit tests, integration tests, and differential tests are run 
(it does what you expect)

• Deploy: Expose the code to an environment for consumption (it’s 
ready!)

CI Workflow

Build Test Deploy

Extra



Step 1 – Understand the business problem

Step 2 – Gather data

Step 3 – Experiment with feature engineering & 

Preprocessing

Step 4 – Modelling

Step 5 (where most people stop) – Package the project for 

quick retraining

Step 6 – Containerise and deploy model to serve at scale

Step 7 – Monitor performance

Example – Using ML to reduce noisy data in an experiment



Step 1: Understanding the business problem is (obviously) key, but most of 
the time the stakeholders won’t know what they want when they ask for it

Stakeholder 
meeting

Solution Draft
Feasibility 

Assessment & 
Report Generation

• Stakeholders have a very different perspective on 

business problems

• Solution design is a process – don’t rush it

• You’re selling your capabilities

Stakeholder 
imagines some 

outcome

Product Roadmap signed off



Step 2: Gather data – This is where the most value can be gained from a 
model, so get creative; you’re trying to best describe your base for the 
problem

• This is where the bulk of the work takes place

• Creating your dataset can take a long time and feel like 

you’re not making progress

• Skipping step 3 as it’s very case-by-case sensitive Pre-processing

Input Data Set

Internal Data External Data

Existing 
products

Product Info

Demographic 
data

Marketing 
consent



Step 4: Modelling – Unfortunately the simplest solution is always the best 
one, especially in a business context

• This is normally the easiest part of the job – especially if 

you’ve done a good job in step 2/3

• Keep in mind what you’re trying to achieve from a 

business perspective

• Keep asking yourself 2 questions:

• How is this improving on the current business process

• How is this going to be consumed

.pkl object for 
inference



Step 5: Packaging – If you’ve built a big fancy model that takes 6 hours to 
provide inference, you’re going to have a bad time

• This is where you enable your model to be called in 1 

line of code

• It opens up a world of possibility for how it can be 

consumed

• Packaging your model and wrapping it in a Flask server 

enables live predictions at scale



Step 6: Containerise & Deploy – Most deployment options opt for Docker 
Containers anyway, so you’re a step ahead of the game

• Unfortunately, most businesses disable 90% of Cloud 

Infrastructure features 

• There is a grey area between data science & data 

engineering here – the ML Engineer is here to fill the 

boots

• Microservices are cool and hip right now

Front End

Model 1 Model 2
Application 

1
Model 3

Database MLFlow

USERS

• Model objects
• Model Metrics

• Predictions
• Logs
• MLFlow Data



Stage 7: Monitoring – This is a very poorly done step in general; if this is done 
right it really helps the lazy developer move on with their life

Why is Monitoring not done as much?

• It’s boring

• Businesses aren’t mature enough to challenge data 

science effectively

• It takes a lot of effort to do right

• Output metrics: The prediction results as & when they’re made to 
check they’re reasonable

• Online performance: A comparison of the prediction to the real 
result, so that we can understand real performance

• Machine-oriented metrics: API response times, CPU usage, etc.

What should we be monitoring?



Thanks for listening!

Questions?

 Fig 1. Marcella’s EPP class, 2016, colourised


