Thermoelectric Materials for Power Generation

Maryana Asaad

Introduction

Thermoelectricity involves the direct conversion between thermal and electrical energy

www.science.nasa.gov

www.eere.energy.gov

www.mcleancoolingtech.com

J.-H. Bahk et al.J.Mater.Chem.**2015**, *3*, 10362

Thermoelectric devices: p-type and n-type semiconducting materials

A schematic of thermoelectric couples

R. B. Kaner et al. Chem. Commun., 2010, 46,8

The efficiency of a thermoelectric material is defined by the figure of merit ZT:

$$ZT = \frac{S^2 \sigma}{\kappa} T$$
$$\kappa = \kappa_{lat} + L\sigma T$$

- S = Seebeck coefficient / V K^{-1}
- σ = electrical conductivity / $\Omega^{\text{-1}}$ m^{\text{-1}}
- κ = Thermal conductivity / Wm⁻¹ K⁻¹

Half Heusler Thermoelectric

Half-Heuslers

- General formula XYZ
- Semiconducting, 18 valence electrons
- Relatively non-toxic and earth abundant elements
- N-type :XNiSn, ZT = 1
- P-type : XCoSb, ZT = 0.5
- > Large power factor: $S^2/\rho = 4-6 \text{ mWm}^{-1}\text{K}^{-2}$
- Reasonably low thermal conductivity

Synthesis and Characterisation

Synthesis

Solid state reaction

Characterisation

 Neutron/X-ray powder diffraction and Rietveld analysis

• Hot press

• Thermoelectric properties

High-Temperature Stability of TiCoSb-Based Compounds

M. Asaad et al. RSC Adv., **2016**, *6*, 56511313

Unexpected N-Type Conduction in Half-Heuslers

M. Asaad et al. Metals.,**2018**,8(11),935313

Half Heusler-Full Heusler composites

TiCoSb-TiM₂Sn (M= Ni, Fe) composites were investigated

M. Asaad et al. J. Solid State Chem., 2019, 276, 181-18913

The University of Manchester

2D Flexible Thermoelectrics Supervisor: Sir Prof Koysta Novoselov

Results are confidential due to the nature of the project

Materials/Synthesis

- Bismuth telluride based alloys
- Intercalation-assisted liquid phase exfoliation

Intercalation

Exfoliation

Suspension

Film Characterisation

Electrical properties

> Durability

X-ray Diffraction

SEM-EDX / FIB

Durability and Electrical Properties

cycle

Structural Characterisation

SEM reveals microstructural variations between the intercalated and non-intercalated samples

Structural Characterisation

XRD confirms high crystallinity and 00l oriented texture for the prepared films Preferred orientation along c-axis is also confirmed by XRD-pole figures

Additional Projects in the NGI

Structural characterisation of Gr, BN, MoS₂

M.Gudarzi, M.Asaad, M.Smith, X.Zhong, R.Gorbachev, K.Novoselov and A.Kretinin, *npj 2D Mater Appl* 5, 35 (2021).

Thermoelectric Heat to Electricity Conversion in Molecule-Nanoparticle Networks

Principle Investigator: Jan Mol

Molecule-nanoparticle networks: Scalability of molecular junction thermoelectrics Aims:

- Synthesising ordered arrays of gold nanoparticles cross-linked by molecules:
 - Various organic molecules and chemical routes to be investigated.
- Structural and thermoelectric characterisation of the fabricated devices.

W. B. Chang et al. Phys.Chem.Chem.Phys., 2015, 17, 6207

Synthesis

Step one: Synthesis of <u>hydrophobic</u> AuNPs:

Dark red colour

(surface plasmon resonance)

Wash with MeOH

Re-disperse in Hexane

Synthesis

Step 2: Ligand exchange: Alkanethiols

Dodecanethiol:

They serve as stabilizing agents to prevent nanoparticles from aggregating they act as tunnel barriers in charge transport through the final arrays structure

Device fabrication and characterisation

Drying-mediated assembly on water surface

Characterisation

Electrical characterisation, Dodecanethiol C₁₂SH

Results are consistent with literature

Electrical characterisation, Dodecanethiol C₁₂SH

IV traces on log-log scale

Electrical characterisation, Ocanethiol C₈SH

, mA

Electrical characterisation, Ocanethiol C₈SH

IV traces on log-log scale

Conductance

Activation Energy

Structural Characterisation, Octanethiol C₈SH

Height Sensor

Height Sensor

100.0 nm

➢ My PhD research focused on half Hesuler thermoelectrics , and the obtained results provide novel and important contribution to the literature

During my first postdoc at the NGI, I developed flexible, high efficient thermoelectric films based on Bismuth Telluride and Antimony Telluride alloys

- > My project in Queen Mary is focused on fabricating devices based on AuNPA
- crosslinked by molecules for TE heat to electricity conversion:
- Investigation different molecules
- Measuring Seebeck coefficient and thermal conductivity of the arrays and eventually
- ✤ calculating ZT
- Structural characterization of the fabricated arrays

Thank you for listening!