

#### LATEST 3-FLAVOUR OSCILLATION RESULTS FROM NOvA

Alexander Booth QMUL PPRC Seminar November 25, 2021



## Overview

- What are neutrino oscillations & why study them?
  - Long baseline principle, how to probe oscillations.
- NOvA experimental setup.
  - NuMI beam & NOvA detectors.
- 2020 analysis methodology.
- Latest results (Neutrino 2020).





# Why Study Neutrinos?





- Neutrinos are "weird":
  - Neutrino mixing looks very different from quark mixing.
  - Neutrino masses are tiny compared to rest of SM.

- Potentially CP-violating:
  - Window into matter-antimatter asymmetry.

#### **Open questions remain!**











• Create in one flavour ( $\nu_{\mu}$ ), but detect in another ( $\nu_{e}$ ).







• Create in one flavour ( $\nu_{\mu}$ ), but detect in another ( $\nu_{e}$ ).



• Each flavour is a superposition of different masses.

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$









• Each flavour is a superposition of different masses.

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} \xrightarrow{3 \text{ flavours}} \nu_\lambda = \sum_{m=1}^3 U^*_{\lambda m} \nu_m$$









3 angles, 1 complex phase.











$$|\nu_{k}(t,x)\rangle = e^{-i(E_{k}t - p_{k}x)} |\nu_{k}(0,0)\rangle$$
  
Momentum of state

Energy of state

• Mass eigenstates produced with equal amounts of energy:  $E_i = E_j = E$ 

• Ultra-relativistic: 
$$t = x = L$$
 and  $p_k x = x \sqrt{E_k^2 - m_k^2} \approx E_k \left(1 - \frac{m_k^2}{2E_k^2}\right) L$ 

phase.

3 angles,

complex





$$|\nu_{k}(t,x)\rangle = e^{-i\frac{m_{k}^{2L}}{2E}}|\nu_{k}(0,0)\rangle$$

$$P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) \sim P\left(U(\theta_{23}, \theta_{13}, \delta, \theta_{12}), \Delta m_{21}^{2}, \Delta m_{32}^{2}, \Delta m_{31}^{2}, \frac{L}{E}\right)$$

$$\Delta m_{ij}^{2} \equiv m_{i}^{2} - m_{j}^{2}$$

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\overset{\text{"Atmospheric" "Reactor" sector sector$$











## Mass Hierarchy & MSW Effect





Normal Hierarchy

Inverted Hierarchy

- Probe this using the matter effect.
- Electron neutrinos experience additional interactions with electrons in matter compared to other flavours.
- Different for neutrinos and anti-neutrinos -> **fake CP**!



## We Love the Matter Effect!



- $\nu_{\mu} \rightarrow \nu_{e}~$  enhanced in NH, suppressed in IH.
- $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$  enhanced in IH, suppressed in NH.



## How to: Appearance

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-e(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2}$$
$$\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}} P_{\text{sol}} \left( \cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP} \right)$$
$$\swarrow \sqrt{P_{\text{atm}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}$$

• $\nu_{\mu} \rightarrow \nu_{e}$  depends on:

- The smallest mixing angle:  $\theta_{13}$
- Solar parameters:  $\sin^2(\theta_{12}), \Delta m_{12}^2$
- Mass hierarchy and matter effects.
- Atmospheric parameters:  $\sin^2(\theta_{23}), \Delta m^2_{32}$
- CP phase:  $\delta_{CP}$ .

| Disappearance               |                                                                                                                  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------|
| constraints:                |                                                                                                                  |
| Reactor:<br>Solar:<br>NOvA: | $\begin{array}{c} \nu_e \rightarrow \nu_e \\ \nu_e \rightarrow \nu_e \\ \nu_\mu \rightarrow \nu_\mu \end{array}$ |
| Open<br>questions           |                                                                                                                  |





- • $\nu_{\mu} \rightarrow \nu_{e}$  depends on:
  - Mass hierarchy and matter effects.
  - Atmospheric parameters:  $\sin^2(\theta_{23}), \Delta m_{32}^2$
  - CP phase:  $\delta_{CP}$ .





- • $\nu_{\mu} \rightarrow \nu_{e}$  depends on:
  - Mass hierarchy and matter effects.
  - Atmospheric parameters:  $\sin^2(\theta_{23}), \Delta m^2_{32}$
  - CP phase:  $\delta_{CP}$ .





- • $\nu_{\mu} \rightarrow \nu_{e}$  depends on:
  - Mass hierarchy and matter effects.
  - Atmospheric parameters:  $\sin^2(\theta_{23}), \Delta m^2_{32}$
  - CP phase:  $\delta_{CP}$ .

$$P(\nu_{\mu} \to \nu_{e}) \neq P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})?$$





<u>k</u>

- • $\nu_{\mu} \rightarrow \nu_{e}$  depends on:
  - Mass hierarchy and matter effects.
  - Atmospheric parameters:  $\sin^2(\theta_{23}), \Delta m_{32}^2$
  - CP phase:  $\delta_{CP}$ .







<u>\</u>

- • $\nu_{\mu} \rightarrow \nu_{e}$  depends on:
  - Mass hierarchy and matter effects.
  - Atmospheric parameters:  $\sin^2(\theta_{23}), \Delta m_{32}^2$
  - CP phase:  $\delta_{CP}$ .



$$\delta_{CP} = \pi/2$$





<u>k</u>

- • $\nu_{\mu} \rightarrow \nu_{e}$  depends on:
  - Mass hierarchy and matter effects.
  - Atmospheric parameters:  $\sin^2(\theta_{23}), \Delta m_{32}^2$
  - CP phase:  $\delta_{CP}$ .







- Neutrinos are well worth studying!
- There are 7 parameters governing 3-flavour oscillation.
- NOvA is interested in 3.
- Make measurements by measuring muon neutrino disappearance probabilities and electron neutrino appearance probabilities ( $P(\nu_{\mu} \rightarrow \nu_{e})$ ).



# NOvA Experimental Setup





# NOvA Overview





- Long-baseline neutrino oscillation experiment.
  - NuMI **neutrino beam** at Fermilab.
  - **Near detector** to measure beam before oscillations.
  - **Far detector** measures the oscillated spectrum.
- **Primary goal,** measurement of 3flavour oscillations via:

$$\begin{array}{c} \nu_{\mu} \rightarrow \nu_{\mu} , \nu_{\mu} \rightarrow \nu_{e} \\ - \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu} , \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e} \end{array}$$

- Other goals include:
  - Search for sterile neutrinos.
  - Neutrino cross sections.
  - Supernova neutrinos.
  - Cosmic ray physics.

## The NOvA Collaboration





#### > 240 people, ~ 50 institutions, 7 countries



## The NOvA Collaboration





#### QMUL is one of the collaboration's newest institutions.



# How We Make Neutrinos: NuMI Beam



- 120 GeV protons from main injector onto graphite target.
- Spill every ~1.5 s, lasts 10 us.
- Hadron spray directed by focussing horns (± 200 kA, FHC/RHC).
- Pions decay (mostly) to muon/muon neutrino pairs.





## How We Make Neutrinos: NuMI Beam





**NOvA Simulation** 





# How We Make Neutrinos: NuMI Beam







Nov. 25, 2021 Alexander Booth | QMUL PPRC Seminar

30



## The NOvA Detectors





- Both are large, (FD 60 m long).
- Functionally identical: consist of extruded PVC cells filled with 11 million litres of liquid scintillator.
- Arranged in alternating directions for 3D reconstruction.
- FD on surface, ND 100 m underground.



## The NOvA Detectors





• Light produced when charged particle passes through cells.

- The light is picked up by wavelength shifting fibre. Transported to an Avalanche PhotoDiode light collected and amplified.
- Good timing resolution. ~ few ns.



# 2020 Analysis Methodology







Observe flavour change as a function of energy over a long distance while mitigating uncertainties on neutrino flux, cross sections and detector response.
















Particle ID





- Pile-up of multiple interactions.
- Detector variation over time.

Reconstruction

Observe flavour change as a function of energy over a long distance while mitigating uncertainties on neutrino flux, cross sections and detector Extrapolation



Updated for 2020



Particle ID



#### Improved robustness to:

- Pile-up of multiple interactions.
- Detector variation over time.

Reconstruction

Observe flavour change as a function of energy over a long distance while mitigating uncertainties on neutrino flux, cross sections and detector Extrapolation

response.

Models

- New version of GEANT4.
- Updated geometry and light model.
- Updated cross-section model.

Updated for 2020



## Selection: Cosmic Rejection





#### Cosmic rejection critical for FD: 11 billion cosmic rays/day







- Even with pulsed beam and excellent timing resolution, still a significant amount of cosmic background.
- Basic quality:
  - Number of hits, track angle, reasonable energy reconstructed.









- Even with pulsed beam and excellent timing resolution, still a significant amount of cosmic background.
- Containment cuts:
  - Vertices in the fiducial volume.
  - Event contained within the detector.









- Even with pulsed beam and excellent timing resolution, still a significant amount of cosmic background.
- PID:
  - Deep learning approach.









- Even with pulsed beam and excellent timing resolution, still a significant amount of cosmic background.
- Cosmic BDT:

- Tuned to reject cosmic ray events.





## Selection





- Electron neutrino sample has second 'peripheral' sample containing high-confidence electron neutrino events close to detector walls.



## Selecting & Identifying Neutrinos





- Use **convolutional neural network** technique from deep learning.
  - NOvA was first HEP experiment to use CNN for PID.
- Successive layers of "feature maps":
  - Create many variants of original image which enhance different features.
  - Maps which are best for enhancing most important features for PID are learned.
  - Output is a **multi-label classifier.**
- Improvement in sensitivity equivalent to 30% more exposure.



## **Energy Reconstruction**







## Near Detector, $\nu_{\mu}$





- Band around MC shows the large impact of flux and cross-section uncertainties when using a single detector.
- Use samples as a data constraint on what we predict at the Far Detector.
- These samples are used to predict both the  $\nu_{\mu}$  and the  $\nu_{e}$  signal spectra at the Far Detector.
- Appearing  $\nu_e$ 's are still  $\nu_\mu$ 's at the Near Detector.



# Extrapolation



- Observe data-MC differences at the ND, use them to modify the FD MC.
- Significantly reduces the impact of uncertainties correlated between detectors.
  - Especially effective at rate effects like the flux (7% to 0.3%).



## **Extrapolating Kinematics**



FD

- Split the ND sample into 3 bins of  $p_{tr}$ extrapolate each separately to the FD. - Effectively "rebalances" the kinematics
  - to better match between the detectors.

1.2

- Re-sum the  $p_t$  bins before fitting.



### Systematic Uncertainties with $p_t$ Extrapolation $\Sigma$



• Overall systematic reduction is 5-10%.

- 30% reduction in cross-section uncertainties.
  - Reduces the size of systematics most likely to contain "unknown unknowns."
  - Slight increase in systematics on lepton reconstruction.



## Improving Sensitivity to Oscillations



- Sensitivity depends primarily on the shape of the energy spectrum.
- Bin by energy resolution: bins of hadronic energy fraction.

- Sensitivity depends primarily on separating signal from background.
- Bin by purity: bin of low and high PID + peripheral.



## Oscillation Fit





- All results come from a joint fit to neutrinos + antineutrinos, electron + muon.
- Other PMNS parameters are constrained by PDG.
- Minimisation of Poisson log-likelihood, systematics ~50 nuisance parameters.
- All confidence intervals and contours are Feldman-Cousins corrected to ensure proper coverage.



## Results: Neutrino 2020





### $\nu_{\mu}$ and $\bar{\nu}_{\mu}$ Data at the Far Detector



### $\nu_e$ and $\bar{\nu}_e$ Data at the Far Detector



 $>4\sigma$  of  $\bar{\nu}_e$  appearance

## With Friends



**NOvA Preliminary** 











 $\delta_{CP}$ 





• No strong asymmetry in the rates of appearance of  $\nu_e$  and  $\bar{\nu}_e$ .



 $\delta_{CP}$ 



- No strong asymmetry in the rates of appearance of  $\nu_e$  and  $\bar{\nu}_e$ .
- $\bullet$  Disfavour hierarchy- $\delta_{CP}$  combinations which would produce asymmetry.

Exclude IH 
$$\delta_{CP} = \frac{\pi}{2}$$
 at >  $3\sigma$   
Disfavour NH  $\delta_{CP} = \frac{3\pi}{2}$  at ~ $2\sigma$ 





- No strong asymmetry in the rates of appearance of  $\nu_{\rho}$  and  $\bar{\nu}_{\rho}$ .
- Disfavour hierarchy- $\delta_{CP}$  combinations which would produce asymmetry.

#### **Prefer:**

Normal Hierarchy at  $1\sigma$ Upper Octant at  $1.2\sigma$ 



**VOvA** Preliminar

## Summary

- <u>k</u> Q1
- Recently opened the box on an updated neutrino oscillation analysis with:
  - ▶ 50% more neutrino beam data,
  - updated simulation and reconstruction, including a new cross-section model,
  - updated extrapolation which mitigates different detector acceptances.
- New 3-flavour oscillation results:

• 
$$\Delta m_{32}^2 = (2.41 \pm 0.07) \times 10^{-3} \text{eV}^2$$

$$\cdot \sin^2 \theta_{23} = 0.57^{0.04}_{-0.03}$$

• exclude IH, 
$$\delta_{CP} = \frac{\pi}{2}$$
 at >  $3\sigma$ 

, disfavour NH, 
$$\delta_{CP} = \frac{\pi}{2}$$
 at ~  $2\sigma$ 

- In the future, joint fit with T2K projected first result 2022.
  - Plan to reduce our largest systematic, those related to detector energy scale with the results of test beam experiment at FNAL (on-going).
  - $\bullet$  Reach  $3\sigma$  hierarchy sensitivity for 30-50% of  $\delta_{CP}$  values, with full dataset and upgraded beam.



#### Questions?













#### A Bit About Me...





• Collaborator in the NOvA & DUNE experiments.



**3-flavour Neutrino Oscillations** 



$$P\left(\nu_{\alpha} \to \nu_{\beta}\right) \sim P\left(U(\theta_{23}, \theta_{13}, \delta, \theta_{12}), \Delta m_{21}^2, \Delta m_{32}^2, \Delta m_{31}^2, \frac{L}{E}\right)$$

Hierarchy problem





3-flavour Neutrino Oscillations



 $P\left(\nu_{\alpha} \to \nu_{\beta}\right) \sim P\left(U(\theta_{23}, \theta_{13}, \delta, \theta_{12}), \Delta m_{21}^2, \Delta m_{32}^2, \Delta m_{31}^2\left(\frac{L}{E}\right)\right)$ 

$$\Delta m_{32}^2 \approx 2 \times 10^{-3} \text{eV}^2 \qquad \Delta m_{31}^2 \sim \Delta m_{32}^2 \qquad \Delta m_{21}^2 \approx +8 \times 10^{-5} \text{eV}^2$$

$$\frac{L}{E} = 500 \text{km/GeV} \qquad \qquad \frac{L}{E} = 15000 \text{km/GeV}$$

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
"Atmospheric" "Reactor" "Solar" sector
$$\theta_{23} \qquad \theta_{13} \quad \delta \qquad \theta_{12}$$



### How to Detect a Neutrino





- Observe charged particles after a neutrino interacts with a nucleus.
- Lepton:
  - $\nu_{\mu} \text{ CC} \rightarrow \mu^{-}, \nu_{e} \text{CC} \rightarrow e^{-}.$
  - NC, no visible lepton.

- Hadronic shower:
  - May contain protons, one or more  $\pi^{\pm}$ , etc.
  - May have EM components from  $\pi^0 
    ightarrow \gamma\gamma$





- Understanding of neutrino interactions is constantly evolving.
- Upgrade to GENIE 3.0.6, gives freedom to chose the models.
- Even with many updated models, some custom tuning required.
  - **FSI**: tuned using external pion scattering data.
  - MEC/Multi-nucleon: tuned to NOvA ND data.



#### **NOvA Preliminary**

68 Nov. 25, 2021 Alexander Booth | QMUL PPRC Seminar

10<sup>4</sup> Events



# Convolutional Neural Network





## **Convolutional Neural Network**



Relative to prior







**NOvA Preliminary** 

- Near Detector  $\nu_e$ -like spectrum contains background to the appearing  $\nu_e$ 's at the FD.
- Largest background is irreducible  $\nu_e$  /  $\bar{\nu}_e$  flux component.
- Use this sample to predict the background to  $\nu_e$  appearance.





#### The Future




# NOvA & T2K



#### **NOvA** Preliminary



- Some tension with T2K's preferred region.
- T2K observes an asymmetry in their  $\nu_e$  and  $\bar{\nu}_e$  appearance.



### NOvA-T2K Joint Analysis



**NOvA Preliminary** 





74 Nov. 25, 2021 Alexander Booth | QMUL PPRC Seminar



## NOvA-T2K Joint Analysis



**NOvA** Preliminary



- A joint analysis is planned which will entail:
  - A joint fit using the complete likelihoods of each experiment.
  - Full detailed energy reconstruction / smearing.
  - Correlating systematics that have a similar impact on both experiments.



## Future Sensitivities





## If nature is kind:

• ~ $3\sigma$  sensitivity to mass hierarchy.

• >  $3\sigma$  sensitivity to rejection of maximal mixing.

