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What is machine learning?
Ethics
Data wrangling
Optimisation
Decision Trees
Neural Networks
» Multilayer Perceptron (MLP)
» Auto-encoders
» Convolutional Neural Networks (CNN)
» Generative Adversarial Networks
Support Vector Machines
KNN
Explainability and Interpretability

Appendix

'Machine Learning is a huge field, and here |
| focus on a restricted set of topics, as an
| introduction into the subject.

B

Where algorithms or issues are explored in
more depth this is generally done for
pedagogical reasons, or the algorithm is

widely used, or because the issue is general to
‘the field.
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OVERVIEW

» Examples are provided for the tutorials.

» These use ROOT or Python and have been tested using the
following versions:

» ROOT: 6.06/02

» Python 3.7 (via an Anaconda install) with the following modules
» TensorFlow 2.2 [Note: examples are not taking advantage of

eager execution and are using the V1 backward compatibility
mode]

» matplotlib
» humpy
» sklearn

A.Beva \«&_ Queen Mary

Universit y of London
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WHAT IS MACHINE LEARNING?

» Oxford English Dictionary:

» “a type of artificial intelligence in which computers use huge amounts of data to learn how
to do tasks rather than being programmed to do them”

» Collins Dictionary:

» “a branch of artificial intelligence in which a computer generates rules underlying or based
on raw data that has been fed into it”

» Google Developers glossary:

» “A program or system that builds (trains) a predictive model from input data. The system
uses the learned model to make useful predictions from new (never-before-seen) data
drawn from the same distribution as the one used to train the model. Machine learning also
refers to the field of study concerned with these programs or systems.”

» There is no single definition agreed of machine learning, so | will use a working definition.
» “The process of using an algorithm to approximate data using some underlying

optimisation heuristic”

o
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WHAT IS MACHINE LEARNING?

» “The process of using an algorithm to approximate data using

some underlying optimisation heuristic”

» We are doing function approximation using some algorithm fit to
some reference data using some heuristic.

» The fitting in this context is referred to as training or learning.

» There are different learning paradigms, we will focus on
supervised and unsupervised learning.

» The trained function is used as a model (i.e. for prediction).

» Dimensionality and parameters are implied in these slides when
referring to general situations, i.e. f(x, 8) — f(x, 8) — f(x).

o
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ETHICS

» How does ethics fit into a lecture on machine learning?

Ethics plural in form but singular or plural in construction :
the discipline dealing with what is good and bad and with
moral duty and obligation.

Morals describes one's particular values concerning what
IS right and what is wrong.

B
Using definitions from the Miriam Webster Dictionary A. Bevan \G,Q‘:;I Queen |\/|al’y

University of London


https://www.merriam-webster.com/dictionary

How does ethics fit into a lecture on machine learning?

Is it ethical to develop an algorithm to identify the
political leaning of an individual with the intent of
targeting advertising, to polarise the viewpoint of voters
with positive reinforcement messages or fake news, to
undermine or influence the outcome of an election?

Is it ethical to develop a pandemic model (e.g. using an
SIR approachl'l) using an Al, that could influence

Government policy, without fully testing the robustness
of predictions?

[1] e.g. see this article on wikipedia . A good illustration of a variant of this model can be found at

o
A.Bevan \G‘Qf! Q_ueeﬂ Mary

University of London


https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology
https://upload.wikimedia.org/wikipedia/commons/3/31/SIRD_model_anim.gif
https://upload.wikimedia.org/wikipedia/commons/3/31/SIRD_model_anim.gif
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ETHICS

» But that is the “real world” why should | care about ethics?

» Is it ethical to use an algorithm for science without checking
that the result makes sense?

o
A.Bevan \G‘Q_al Queen |\/|al’y

University of London
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ETHICS

» But that is the “real world” why should | care about ethics?

» Is it ethical to use an algorithm for science without checking
that the result makes sense?

» Is it ethical to use an energy intensive algorithm when a
computationally cheap alternative that performs just as well
exists?

o
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ETHICS

» But that is the “real world” why should | care about ethics?

» Is it ethical to use an algorithm for science without checking
that the result makes sense?

» Is it ethical to use an energy intensive algorithm when a

computationally cheap alternative that performs just as well
exists?

» What we think of as good scientific practice, is also ethical
behaviour. It leads to robust results.

» Ethical behaviour in the wider world can have deeper
ramifications than getting a robust scientific result or not.

o
A.Bevan \EQ_‘SI Queen |\/|al’y

University of London



But that is the “real world” why should | care about ethics?

In reality most people who do a PhD in an STFC (or
EPSRC) area of science will not end up in academia, and
ethics will play a role beyond scientific correctness for
those scientists.

For those of us who do stay in academia, then we have an
obligation to help people understand the ramifications of
algorithms and our rationale for using them (or not).

For all of us, we have transferable skills that can be
applied to real world problems.

o
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ETHICS

» The UK Government developed a data ethics framework!1!:

» “Public sector organisations should use the Data Ethics Framework to guide the appropriate use

of data to inform policy and service design”

Data Ethics Framework

0
1. Start with clear user need and public benefit ool o
Description of the user need with supporting evidence
- . Needs clarification or
2. Be aware of relevant legislation and codes of practice et it
List the pieces of legislation, codes of practice and guidance that
apply to your project.
A . Reuse not
3. Use data that is proportionate to the user need OGO
Describe how the data being used is proportional to the user need
4. Understand the limitations of the data et
Identify the potential limitations of the data source(s) and how they
are being mitigated
5. Use robust practices and work within your skillset et
Explain the relevant expertise and approaches that are being
employed to maximise the efficacy of the project
No scrutiny or peer
6. Make your work transparent and be accountable et
Describe how you have considered making your work transparent
and accountable
7. Embed data use responsibly No ongoing plan
determined

Describe the steps taken to ensure any new model, policy or
service is managed responsibly

1

2

» Other organisations such as the UN and |IEEE (as well as the EU) are also
concerned about ethical use of data, and ethical algorithms, from regulatory

and the perspective of rights.

[1] See https://www.gov.uk/government/publications/data-ethics-framework

o
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https://ethicsinaction.ieee.org
https://www.gov.uk/government/publications/data-ethics-framework
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DATA WRANGLING

o
A.Bevan ‘an_‘l Queen Mary

University of London



INTRODUCTION TO MACHINE LEARNING 16

DATA WRANGLING (AKA FEATURE ENGINEERING)

» Need to understand the data being analysed.

» Domain context will provide most insight into getting information to
highlight the solution to your problem.

» Identify the features of interest in the data.

» Allow you to reduce the dimensionality of the problem into as few a set of
inputs as possible.

» Most of the analysis can be done with this domain context background:

» Deep Learning (DL) can replace the hard work of feature engineering
for a resource cost and a lack of explainability and interpretability. [1!

» “Smart Learning” (SL) is an alternative way of approaching the
problem. 2]

[1] e.g. See work by Pierre Baldi on Higgs analysis at the LHC: DOI: 10.1038/ncomms5308. Also see appendix.
[2] | attribute the term Smart Learning to the use of domain knowledge and understandable Al, such as Bayesian Networks. A term that | first*heard about
from Norman Fenton who has a good book on the topic. A Bevan \c‘,Q‘%I Queen Mary

University of London



https://www.nature.com/articles/ncomms5308.pdf
https://www.eecs.qmul.ac.uk/~norman/
http://bayesianrisk.blogspot.com
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DATA WRANGLING

» In HEP we use cut based selection to:

» Remove pathological data (poorly calibrated or partially
complete data, bad beam conditions, etc).

» Remove obvious background examples from the data
(well known SM processes that are just not interesting
for study, or use as a calibration or control sample).

» Prepare data for the “statistical analysis” that will include
the use of multivariate analysis techniques and fitting.

nnnnnnnnnnnnnnnnnn
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DATA WRANGLING
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» e.g.Higgs physics: Throw away ~109 recorded events for each interesting one.

Standard Model Production Cross Section Measurements

Status: November 2019
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DATA WRANGLING

» Knowing what the task is allows one to identify the
features of interest. This is the domain context knowledge.

» If your signal is the process pp—>HH+X, then:

» Laws of physics provide insights for you to refine your
list of features to train on.

» e.g.the Higgs mass or pr will play a role in identifying
the signal, along with decay product properties (e.g.
b-tag quality), etc.

nnnnnnnnnnnnnnnnnn
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DATA WRANGLING

» Reduce the number of dimensions of interest:

» Trial and error with different inputs to identify what improves performance
of the algorithm and what does not.

» Linearly correlated features can be combined to reduce the number of
features providing information for the algorithm to learn from.

» Principal Component Analysis (PCA) to address this problem.

» Some neural network configurations do that automatically for you (e.g.
auto-encoders).

» Let the algorithm learn what is important and what is not.

» Some algorithms (e.g. support vector machines) implicitly increase the
dimensionality of the problem.

o
A.Bevan \G‘Q_al Queen |\/|al’y

University of London
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ACTIVATION FUNCTIONS: DATA PREPARATION

» Input features are arbitrary; whereas (for example) activation functions in neural networks
work best for a standardised input domain of [-1, 1] or [0, 1].

» We can map our input feature space onto a standardised domain that matches some
range that matches that of the activation function.

» Saves work for the optimiser in determining hyper-parameters.
» Standardises weights to avoid numerical inaccuracies; and set common starting weights.

— _ = S —— — —— e ——— — =

) e.g.

i » having an energy or momentum measured in units of 102 eV, would require weights |
| O(10-'2) to obtain an O(1) result for wix;.

| » Mapping eV —TeV would translate 1012 eV +— 1TeV, and allow for O(1) weights
leading to an O(1) result for wix;.

» Comparing weights for features that are standardised allows the user to develop an
intuition as to what the corresponding activation function will look like.

o
A.Bevan \G‘Q_sl Queen |\/|al’y
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DATA WRANGLING

» Variable transformations are also useful (can be vital).

1. Shift the distribution to have a zero mean
Ao 00 A
® ® Mean 2. De-correlate input features
® :.‘ Cancellation
o0 3. Scale to match covariance of features.
S —»
KL-
Expansion
A A
Covariance
Equalization
o
00 ® > .::.': o >
(WK

Y. LeCun et al., Efficient BackProp, Neural Networks Tricks of the Trade, Springer 1998 (Fig. 3).

o
A.Bevan \G‘Q_al Queen |\/|al’y
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INTRODUCTION TO MACHINE LEARNING 23

DATA WRANGLING

» Data wrangling is an important part of ensuring you get the
most out of applying machine learning; yet it is often not
celebrated as the requirements can be very problem specific.

» If you are interested in this topic you may wish to review the
data wrangling presentation and tutorials given by Dr Nick
Barlow from the Alan Turing Institute at the GradNet meeting
on Machine Learning and Al in January 2020:

» Dr Barlow's talk and lecture can be found at: https://
indico.ph.gmul.ac.uk/indico/conferenceOtherViews.py?

view=standard&confld=543

o
A.Bevan \G‘Q_al Queen |\/|al’y
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https://indico.ph.qmul.ac.uk/indico/conferenceOtherViews.py?view=standard&confId=543
https://indico.ph.qmul.ac.uk/indico/conferenceOtherViews.py?view=standard&confId=543
https://indico.ph.qmul.ac.uk/indico/conferenceOtherViews.py?view=standard&confId=543
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TYPES OF LEARNING
GRID SEARCH
GRADIENT DESCENT
ADAM OPTIMISER
MISCELLANEOQOUS

OPTMISATION

A number of optimisation methods exist, and | selectively focus on three. For example see C. Bishop, Neural Networks for \ & {
Pattern Recognition or |. Goodfellow et. al, Deep Learning for more information on optimisation algorithms. A.Bevan "Q—a Queen Mary

University of London
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TYPES OF LEARNING

» Consider a model y that depends on a parameter set 6, we can select a pointin
the parameter hyperspace 0 that has a corresponding estimator of the function J.

» The 0 are hyper-parameters (HPs) of the model.

» Unsupervised learning:
» Infer the probability distribution P(y) from the data without using labels.
» Widely used in many fields of research.

» Supervised learning:
» Use training examples from labeled data sets with a known type or value, ¢, for
each example.
» Some loss function is used to compare 7 against model predictions 3.
» Can be thought of as computing a conditional probability P(¢| y).
» This is the most commonly used approach in particle physics today.

o
A.Bevan \G‘Q_al Queen |\/|al’y
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TYPES OF LEARNING: SUPERVISED LEARNING

27

» Define a heuristic based on some figure of merit (FOM) designed to
improve the value of that metric through some iterative process.

» The FOM is called the objective function or loss function or cost function
in machine learning.

» e.d.the L, norm loss function: this is like a %2, but without the error term:

N

examples

L, = Z [ti_y(é)lz

=1

» The 0 are called HPs as they form a hyperspace; other variables in the
optimisation process are often included in the set of HPs (e.g. learning

rate for a neural network, cost for a support vector machine, tree depth for
a decision tree etc.).

o
A.Bevan \G‘Q_al Queen |\/|al’y
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TYPES OF LEARNING

» Batch learning

» Use a sample (batch) of training data to evaluate an estimate of the

error and update weights in the optimisation.

Advantages of Batch Learning
1. Conditions of convergence are well understood.
2. Many acceleration techniques (e.g. conjugate gradient) only op-

erate in batch learning.
3. Theoretical analysis of the weight dynamics and convergence

rates are simpler.

» Stochastic learning

» Use individual training examples to evaluate an estimate of the error
and update weights in the optimisation.

Advantages of Stochastic Learning
1. Stochastic learning is usually much faster than batch learning.
2. Stochastic learning also often results in better solutions.
3. Stochastic learning can be used for tracking changes.

Y. LeCun et al., Efficient BackProp, Neural Networks Tricks of the Trade, Springer 1998 (Fig. 3).

o
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*THIS IS A SIMPLE OPTIMISATION ALGORITHM THAT CAN BE USED WITH NO PROGRAMMING
EXPERIENCE.

*ONE CAN IMPLEMENT A 1 OR 2 DIMENSIONAL GRID SEARCH USING AN EXCEL SPREADSHEET,
AND FROM INSPECTION OF THE TABULATED RESULTS YOU CAN OPTIMISE SIMPLE PROBLEMS.

*THIS IS A BRUTE FORCE OPTIMISATION APPROACH, AND IT IS USED WIDELY IN CERTAIN
APPLICATIONS ACROSS A NUMBER OF RESEARCH FIELDS.

OPTIMISATION
GRID SEARCH

o
A.Bevan ‘E;Q_‘gl Queen |\/|al’y

University of London
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GRID SEARCH

» Scanning through the hyperspace for each éi allows us to
compute Lz, and the minimum value obtained is the “best

fit” or optimal estimate of the parameters 6.

» Simple heuristic to implement - you can do this in Excel
for 1 or 2D problems. v

» Easy to understand. v

» Expensive to compute: scanning n points in a dimension

M

requires n computations for M = dim(6). X

» Heuristic suffers from the curse of dimensionality.

o
A.Bevan \c“Q_sl Queeﬂ |\/|al’y

University of London
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GRID SEARCH

» e.dg. Consider an L2 loss function optimisation of the HPs for y = mx + ¢, i.e.

optimise mand c. Here m = 1.0,¢c = 1.0

450 """""""""""""""" == Smml e e s
400 ' S G/ <7 A I 7~ Q| I S (O g [ S g [ o B sl e S s
350 ) N R ==y s g % (s = g B g g e g
0 3003 NS T T T i
Bmos  NNSSZe A/ e R NS ZZEE S :
~ . ! : > <> A Sy e STAV A Ay oy s v/ L / SR EEE
200" . NS 3 {6
1503 .~ \\\}\.;\\\V..."’ N ~ 104 :
10037 M vy & {5
503" D 16 15
0 S 12 . 08
0 o2 e 0.8 % 03
04 06 08 \QQ.:. 0. d LI ' LI ' T 11 ' LI ' T T 1T ' LI ' LI ' T T 71 ' LI ’ T 1 00.2
7 04 02 04 06 08 1 12 14 16 18 o2
I:ﬁ 1.4 1.6 0.2 M .
18 5 0 m

» The contours of the loss function show a minimum.

» The optimal value is selected from a discrete grid of points, only get an
exact result if the grid maps onto the problem perfectly (as in this example).

o
A.Bevan \G‘Q_al Queen |V|al’y

University of London



e.g. The libsvmll package uses a HP grid search for
optimisation for the Support Vector Machine algorithm;
where the cost C and I hyper-parameters need to be
optimised.

The grid search is done efficiently by adapting to
whatever step is sensible, in this case the algorithm has
[ as the parameter of an exponential (the radial basis
function); and so a linear search in C and a logarithmic

search in I is appropriate to sample the parameter
hyperspace effectively.

[1] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines. ACM Transactions on Intelligent Systems and Technology,
2:27:1--27:27,2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

o
A.Bevan \G‘Qf! Queen Mary
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GRADIENT DESCENT

» Guess an initial value for the weight parameter: wo.

o
e.g. see Bishop, Neural Networks for Pattern Recognition (2013) Oxford University Press A.Bevan %Q) Queen Mary

University of London
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GRADIENT DESCENT

» Estimate the gradient at that point (tangent to the curve)

nnnnnnnnnnnnnnnnnn
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GRADIENT DESCENT

» Compute Aw such that AE is negative (to move toward the
minimum)

a is the learning rate: a small positive number

dE

Choose AW = — a—— to ensure AE is always negative. .
dw A.Bevan \GQ_QI Queen |\/|al’y

University of London
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GRADIENT DESCENT

» Compute a new weight value: wq = wo+Aw

Wil

1 | 1 ‘u I‘ 1 w
2w 4w

a is the learning rate: a small positive number
dE
Choose AW = — a—— to ensure AE is always negative.

o
dw A.Bevan \C%‘Q_sl Queen |\/|al’y

University of London
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GRADIENT DESCENT

» Repeat until some convergence criteria is satisfied.

Wil

Wh 2 W2 Wi 4WO

a is the learning rate: a small positive number

dE

Choose AW = — a—— to ensure AE is always negative. .
dw A.Bevan \eaQ_f,l Queen |\/|al’y

University of London
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GRADIENT DESCENT

» We can extend this from a one parameter optimisation to a 2 parameter
one, and follow the same principles, now in 2D.

_5

» The successive points wi+1 can be visualised a bit like a ball rolling down
a concave hill into the region of the minimum.

» In general update weights such that AE = AWVE = — aV?E

» and w;. . =w;,—aVE.

o
A.Bevan \C%‘Q_sl Queen |\/|al’y

University of London
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GRADIENT DESCENT: EXAMPLE

» Returning to the y = mx + ¢ example, we can optimise this
using the Gradient Descent algorithm.

Linear Regression Example Linear Regression Example
1.2 - ]
6 x 10° |
1.0 -
0.8 4 x 100 -
2 3 x10°
b N
-
0.4 2 x 100 {
0.2
0.0 100 _
0.0 0.2 0.4 0.6 0.8 1.0 0 20 40 60 80 100
X Training epoch

Use N=100 and a = 0.005 with the TensorFlow GradientDescent optimiser to obtain:
m = 0.9928...

C = 00226 3 Implementation: TensorFlow 2.2 (using V1 compatibility)
Jupyter Notebook

o
A.Bevan \GQ_QI Queen |\/|al’y
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GRADIENT DESCENT: EXAMPLE

» Returning to the y = mx + ¢ example, we can optimise this

using the Gradient Descent algorithm.

le15 Linear Regression Example Linear Regression Example
OO - 00 0 HENINEDS 000 OO @O OO GO @IED G000 0 GO D 006 0000
30 _
m=1.0 10
~024 ¢=0.0 1026 -
1022 -
—0.4 -
A 108 -
x o
T -0.6- N 1014 -
1010 -
—0.8 -
106 -
—1.0 - 102 -
0.0 0.2 0.4 0.6 0.8 1.0 0 20 40 60 80 100
X Training epoch

Use N=100 and o = 0.01 with the TensorFlow GradientDescent optimiser to obtain:
—~3.5x%x 10"

= —7.08 x 10!
The minimiser fails; too large a learning rate is being used.

m
c

Implementation: TensorFlow 2.2 (using V1 compatibility)
Jupyter Notebook

o
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GRADIENT DESCENT: REFLECTION

The examples shown illustrate problems with parabolic minima.

With selection of an appropriate learning rate, a, to fix the step size, we

can guarantee convergence to a sensible minimum in some number of
steps.

Translating the distribution to a fixed scale, then we can predict how many
steps it will take to converge to the minimum from some distance away

from it for a given a.

If the problem hyperspace is not parabolic, this becomes more
complicated, and there is no guarantee that we converge to the minimum.

Modern machine learning algorithms use more refined variants on this
method.

A.Bevan \‘Qal Queen |\/|al’y

rsity of London
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INTRODUCTION TO MACHINE LEARNING by
ADAM OPTIMISER (ADAM: ADAptive Moment estimation based on gradient descent)

» This is a stochastic gradient descent algorithm.

» Consider a model f(0) that is differentiable with respect to the HPs 6 so that:
» tis the training epoch.
» the gradient g, = V/,(0,_,) can be computed.
» m, (v,) are biased values of the first (second) moment.
» m, (V,) are bias corrected estimator of the moments.

» Some initial guess for the HP is taken: §,, and the HPs for a given epoch are
denoted by 0..

» ais the step size (i.e. learning rate).

» fiand f3, are exponential decay rates of moments.

o
Kingma and Ba, Proc. 3rd Int Conf. Learning Representations, San Diego, 2015 A.Bevan %O Queen Mary

University of London
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ADAM OPTI M ISER (ADAM: ADAptive Moment estimation based on gradient descent)

) Algorithm 1: Adam, our proposed algorithm for stochastic optlmlzatlon See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise
square g; © g;. Good default settings for the tested machine learning problems are = 0.001,
B1 = 0.9, B2 = 0.999 and € = 10~8. All operations on vectors are element-wise. With 3% and 55
we denote (31 and (35 to the power .

Require: «: Stepsize
Require: 31,3 € [0, 1): Exponential decay rates for the moment estimates
Require: f(6): Stochastic objective function with parameters ¢
Require: 6: Initial parameter vector
mo < 0 (Initialize 1% moment vector)
v + 0 (Initialize 2™ moment vector)
t <— 0 (Initialize timestep)
while 6; not converged do
t<—1t+1
gt < Vo fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep t)
my < 1 -me—1 + (1 — B1) - g« (Update biased first moment estimate)
vy < B -vi_1 + (1 — B2) - g? (Update biased second raw moment estimate)
my < my /(1 — B1) (Compute bias-corrected first moment estimate)
vy < v /(1 — B%) (Compute bias-corrected second raw moment estimate)
0; < 0;_1 — o - my/(VV; + €) (Update parameters)
end while
return 6, (Resulting parameters)

o
Kingma and Ba, Proc. 3rd Int Conf. Learning Representations, San Diego, 2015 A.Bevan %O Queen Mary

University of London
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ADAM OPTI M ISER (ADAM: ADAptive Moment estimation based on gradient descent)

» Benchmarking performance using MNIST and CFAR10 data indicates
that Adam with dropout minimises the loss function compared with
other optimisers tested.

10 MNIST Multilayer Neural Network + dropout CIFAR10 ConvNet
: ’ — AdaGrad .02 — AdaGrad
\ —  RMSProp — AdaGrad+dropout
\ — SGDNesterov — SGDNesterov
— AdaDelta 10! SGDNesterov+dropout| |
— Adam —  Adam
' Adam+dropout
. 10° \&
2 2 :
£ €10t}
o e
1072 b W
107 |
107 |
i i ; 10 i L ‘ ' i i i
0 50 100 150 200 0 5 10 15 20 25 30 35 40 45

iterations over entire dataset iterations over entire dataset

Faster drop off in loss, and lower overall loss obtained vs other
algorithms benchmarked at the time.

o
Kingma and Ba, Proc. 3rd Int Conf. Learning Representations, San Diego, 2015 A.Bevan %O Queen Mary

University of London
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ADAM OPTIMISER (ADAM: ADAptive Moment estimation based on gradient descent)
» Ben | - tates
o MNIST and CFAR1 O are standard [
I\ |
othe benchmark data sets in CS (see \

appendix).

:MNIST is a set of handwritten numbers 0

through 9; CFAR10(0) is an image
'classification data set (c:ars boats etc)

entire dataset

» Faster arop OTF in 10SS, and lower overall 10Ss obtained vs otner
algorithms benchmarked at the time.

Kingma and Ba, Proc. 3rd Int Conf. Learning Representations, San Diego, 2015 A.Beva \c;_ Queen Mary

Universit y of London
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MULTIPLE MINIMA
MORE ON LOSS FUNCTIONS

OPTIMISATION
MISCELLANEQUS

University of London
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GRADIENT DESCENT:-MULTIPLE MINIMA

» Often more complication hyperspace optimisation

problems are encountered, where there are multiple
minima.

The gradient descent
minimisation algorithm is based
on the assumption that there is
a single minimum to be found.

In reality there are often 208 R
multiple minima. E 10

Sometimes the minima are
degenerate, or near
degenerate.

How do we know we have
converged on the global
minimum?

One of several minima

nnnnnnnnnnnnnnnnnn
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GRADIENT DESCENT:-MULTIPLE MINIMA

» Often more complication hyperspace optimisation

problems are encountered, where there are multiple
minima.

The gradient descent
minimisation algorithm is based
on the assumption that there is
a single minimum to be found.

In reality there are often 208 R
multiple minima. E 10

Sometimes the minima are
degenerate, or near
degenerate.

How do we know we have
converged on the global
minimum?

global minimum

nnnnnnnnnnnnnnnnnn
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OPTIMISATION: LOSS FUNCTIONS

» There are many types of loss function other than the L, loss

N

examples

» L1 norm loss: .
1 Li= ) |-

=1

» The mean square error (MSE) loss functlon

1 1 examples 0
N, examples N, examples  ;_1
' CrOSS entro Py Nexampies :;:The croes entropy can be thoug h;fs B
Si\(xi)ln t; | the negative log likelihood function for

the data t; under the model y y

=1

» and many more can be found in the literature and online ...

A. Bevan \\Q‘:;I Queen |\/|al’y

rsity of London
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SUPERVISED LEARNING
OVERTRAINING

WEIGHT REGULARISATION
CROSS VALIDATION
DROPOUT

TRAINING

[1] G. Hinton et al. arXiv:1207.0580

o
A.Bevan \an_‘l Queen Mary

University of London
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TRAINING
SUPERVISED LEARNING

University of London
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SUPERVISED LEARNING

» For supervised learning the loss function depends on both model parameters
and a known target value ¢, for a given example.

N,

examples

12
, e.g.the Ly loss: L, = Z [ti—)A/(H)] :
i=1

» This requires (at a minimum) a sample of data with the input feature space of
interest, and for each example in the data, the known target output value.

» The loss function is optimised using the data, to obtain a model.

» Unlike fitting however we don’t care about the uncertainty on the model

N\

parameter estimates, only on the nominal values obtained, 6.

» Due to the complexity of models, it is generally not possible to understand if the
optimisation converged to a sensible solution by inspecting marginalised
projections of the model on the data.

o
[1] G. Hinton et al. arXiv:1207.0580 A.Bevan %O Queen Mary

University of London
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SUPERVISED LEARNING

» e.g.the Kaggle Higgs data sample:

Eventld, DER_mass_MMC, DER_mass_transverse_met_lep, ..., Weight| Labell KaggleSet, KaggleWeight

Features (not all to be used for training) Known example type

» The KaggleSet column in the CVS file for this data allows the user to
understand if this is to be used for training or testing, or some other means
(e.g. Kaggle Score Board evaluation).

» The Label column, is the known label; this defines the 7, used in the loss
function.

» | use this challenge data as an assignment for undergraduate lectures (pdf,
zip). N.B.the zip file is 189Mb.

L
[1] G. Hinton et al. arXiv:1207.0580 A.Bevan \G‘Q_al Queen |\/|al’y

University of London


https://www.kaggle.com/c/higgs-boson
https://pprc.qmul.ac.uk/~bevan/teaching/PML/Htautau.pdf
https://pprc.qmul.ac.uk/~bevan/statistics/TF/data.zip
https://arxiv.org/abs/1207.0580
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WEIGHT REGULARISATION
CROSS VALIDATION

TRAINING
OVERTRAINING

o
A.Bevan ‘an_‘l Queen Mary

University of London
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OVERTRAINING

» A model is over trained if the HPs that have been
determined are tuned to the statistical fluctuations in the
data set.

» Simple illustration of the problem:

N — i
ook 30 training exan_nples ' The decision boundary selected here
08 ' ' does a good job of separating the red
0.7 ' | and blue dots.
0.()5—
o.sz Boundaries like this can be obtained by
04E- training models on limited data |
E ‘samples. The accuracies can be
221 3 impressive.

00l l lO.ll - l0.2l - l0.3l . l0.4l - l0.5l - lO.()l . l0.7l - l0,8l - lOf‘)l . lxl But WOUId the performance be as good

with a new, or a larger data sample? .‘

o
A.Bevan \G‘Q_al Queen |\/|al’y

University of London
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OVERTRAINING

» A model is over trained if the HPs that have been
determined are tuned to the statistical fluctuations in the
data set.

» Simple illustration of the problem:

PO - 1

osE- 30 training examples 0oE-1000 training exza-r:r.lbl_e_s_:.'_ :
= . - . Tt L AT e
5 05E SRR
E % E H . ‘: . " '-;.'-l..:‘-..-’.-..:-:'_ Ll .
0.7 0.7 - I'.-':_.-_M.ﬂ'-,-; e T
- = ‘.,‘:r-_.i'_sf.i:_ﬂ} iy . #.-_;1 e
0.6— 0.6— e, " F{. [ DAYyt ..:,a . -.-:.. ..F_,
- — . - . -: . ...'. .
0.5: 0‘5; S
04F- 0.4F- 3
032— 0.32—
0.2F- 0.2F
0.1 0.1

=
o
o
o
o
W
o
B
of
il
o
=
=
“
o
o0
o—
o
=

S e —— —== — == = == = — E——

“Increasing to 1000 training examples we can see the boundary doesn’t do as well.
' This illustrates the kind of problem encountered when we overfit HPs of a model.

L: = — — E— _————— e —

A.Bevan \G‘Q_sl Queen |\/|al’y

University of London
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OVERTRAINING

» One way to avoid tuning to statistical fluctuations in the data
is to impose a training convergence criteria based on a data
sample independent from the training set: a test sample.

» Use the loss evaluated for the training and test samples
to check to see if the HPs are over trained.

» If both samples have similar loss then the model
response function is similar on two statistically

independent samples.

» Note: If the samples are large enough then one could
reasonably assume that the response function would

Loss

then be general when applied to an unseen data sample.

» "large enough” is a model and problem dependent
constraint.

» Some also recommend a third validation set of data in order
to provide a completely independent verification of
algorithm performance.

59

Divergence
indicates the
model learned
statistical
fluctuations in the
train set. This is
overtrained.

Similar test-train
loss function

Training iterations (epochs)

o
A.Bevan \G‘Q_al Queen |\/|al’y

University of London
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» Training convergence criteria that could be used:
» Terminate training after Nepochs
» Loss comparison:
» Evaluate the performance on the training and test sets.

» Compare the two and place some threshold on the difference

Aross < Oross

» Terminate the training when the gradient of the loss function with
respect to the weights is below some threshold.

» Terminate the training when the A; ¢¢ starts to increase for the test
sample.

o
A.Bevan \G‘Q_al Queen |\/|al’y

University of London
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OVERTRAINING: WEIGHT REGULARISATION

Weight regularisation involves adding a penalty term to the loss
function used to optimise the HPs of a network.

This term is based on the sum of the weights w; in the network and
takes the form:
'Y oW

1=Vweights

The rationale is to add an additional cost term to the optimisation
coming from the complexity of the network.

The performance of the network will vary as a function of A.

To optimise a network using weight regularisation it will have to be
trained a number of times in order to identify the value corresponding
to the min(cost) from the set of trained solutions.

See Ch. 9 of Bishop's Neural Network for Pattern Recognition

WO
Loshchilov, Frank Hutter, arXiv:1711.05101 A.Bevan &,Qﬂ Queen Mal’y

University of London
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OVERTRAINING: WEIGHT REGULARISATION

» For example we can consider extending an MSE loss function

to allow for weight regularisation. The MSE loss is given by:
N

€= % Z(yz’ —t;)°

1=1
» To allow for regularisation we add the sum of weights term:

N

EZNZ(yi—ti)2—|—)\ Z w;

1=1 1=V, wetghts

» This is a simple modification to make to the NN training
process.

See Ch. 9 of Bishop's Neural Network for Pattern Recognition
Loshchilov, Frank Hutter, arXiv:1711.05101

nnnnnnnnnnnnnnnnnn
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OVERTRAINING: CROSS VALIDATION

» A well trained model will provide robust predictions, irrespective of the
examples presented to it.

» The variance of model predictions will be small.

» The model predictions may be systematically biased independently
of this.

» One can divide the training set up into k-folds, and then perform k
trainings; each one leaving a single fold out.

» The amount of data used in a fold will depend (generally the more data
the better.

» The ensemble of predictions indicates the variance on the model

output.

Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320-328.
A.B WO
For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010). evan  Co g‘ml’!gyeofrlnh/nlary



See the appendix for more on cross validation.
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OVERTRAINING: CROSS VALIDATION

» The use of cross validation to determine the spread of model predictions, and
any systematic bias on prediction can be useful.

» e.d.in a physics context: Consider a new particle search at the Large Hadron
Collider.

» Using an overtrained model to suppress background and enhance signal will
result in a lack of experimenter understanding as to how the expected and
observed limits on the new particle relate to each other.

» This could result in a false discovery of new physics.
» It could result in missing out on a discovery of new physics.

» Some people say it is not wrong to use an over trained model - | argue
strongly that it is not scientifically correct to use an over trained model, unless
the variance on that model, and hence the implications are well understood.

Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320-328. % "' {
For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010). A.Bevan QQ g‘ggﬁfﬂnh{lary
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TRAINING
DROPOUT

o
A.Bevan ‘an_‘l Queen Mary

University of London
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DROPOUT

» A problem with deep networks is the number of HPs that need to be
determined.

» This leads to a requirement for very large data sets to avoid overfitting
(or fine-tuning).

» HPs can also learn to “co-adapt” in the training process.

» co-adapt means that as one parameter is changed, another in the
network can be modified in a correlated way to offset that change.

» This kind of behaviour intentionally exists in some algorithms
(Sequential Minimal Optimisation for Support Vector machines,
where pairs of HPs are changed to conserve an overall zero sum);
but is generally unwelcome behaviour.

o
G. Hinton et al. arXiv:1207.0580, Srivastava et al., J. Machine Learning Research 15 (2014) 1929-1958 A.Bevan %O Queen Mary

University of London
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OVER FITTING: DROPOUT

» A pragmatic way to mitigate these issues is to intentionally compromise the model
randomly in different epochs of the training by removing units from the network.

| Dropout is used
- only during
training.

7
5
§’6§/’
N
AN
XX
N\

AN

\§\
W
(X
\ //

<
;
X
Owp
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XX
N

>
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\
4

‘The full model is
used for making
predictions.

()

Y
A
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0
LN

X
."p
'
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{
&

(a) Standard Neural Net (b) After applying dropout.

» That way the whole model will be effectively trained on a sub-sample of the data
with the aim of limiting the ability to learn statistical fluctuations in the data, and
mitigating the co-adaption issue.

» This does not remove the possibility that a model is overtrained, as with the
previous discussion HP generalisation is promoted by using this method.

&
G. Hinton et al. arXiv:1207.0580, Srivastava et al., J. Machine Learning Research 15(2014) 1929-1958 A. Bevan \c\'le Queen Mary

University of London
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DROPOUT

Test Error
220 @ - :
— 800 units 2 layers
— 1200 units 3 layers
200 — 1200 units 2 layers ||
| —— 2000 units 2 layers
— 160
180 .
" Previous best network error on the MNIST sample
© 160
o
S ‘ 50% dropout in hidden layers
Q
Q
ol T
k)“‘m "\ ‘”“» w" ’u\) ,H o 'IVM » \, V'J. AI . N’f"‘h\ JI“\JO w";‘
120 |
’l ' V‘ p
| & i A
‘ \M “‘m 'VW "“"‘\/ w‘w“”"'o‘ "\w (N Mu.#\“'
100}
50% dropout in hidden layers + 20% in input layer
80 500 1000 1500 2000 2500 3000
Epochs

G. Hinton et al. arXiv:1207.0580, Srivastava et al., J. Machine Learning Research 15(2014) 1929-1958
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» Example from Hinton et al.
for an MNIST sample.

» Using 50% drop out on
the hidden layers gives an
improvement over the
previous best network
architecture.

» Adding 20% drop out in
the input layer provides
further improvement in
error.

o
A.Bevan \C%‘Q_sl Queen |\/|al’y

University of London
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OVER FITTING: DROPOUT

» A variety of architectures has been explored with different training samples for this technique,

30r

¢—¢ With dropout
- Wwithout dropout

25}

Classification Error %
[~ N
w o

Classification Error %

-
o

0 200000 400000 600000 800000 1000000 102

, 10°
Number of weight updates

10 10

Dataset size

» Dropout can be detrimental for small training samples, however in general the results show that
dropout is beneficial.

» For deep networks or typical training samples O(500) examples or more this technique is expected
to be beneficial.

» For algorithms with very large training data sets, the benefits are less clear.

L
G. Hinton et al. arXiv:1207.0580, Srivastava et al., J. Machine Learning Research 15 (2014) 1929-1958 A. Bevan ‘c«,le Queeﬂ Mary

University of London
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DROPOUT

Test Error

— 15 frames 3 layers 2000 units
—— 15 frames 3 layers 4000 units
— 31 frames 3 layers 4000 units ||
— 31 frames 4 layers 4000 units

finetuning mLt dropout

finetuning with dropout

0 50 100 150 200

Epochs
Test Set Error
40 T
\ — 2000-1000-1000-50
— 2000-2000-1000-50
38
° 36 \ training without dropout
: \
Al Al
§ 34 »«/\N\Mf\/\/\\ﬁ”\/\” \,P\AM \“\ \/V «/,\w}\\) \/
S

- .
S 32} training with dropout

30

RCV1-v2

0 100 200 360 400 500
Epochs

28
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» Example from Hinton et al.
for a voice recognition

sample of data (TIMIT,
speech recognition data).

» lllustrates the classification
error as a function of epoch
with and without dropout.

» Similar results were obtained
by Hinton and his team with

the Reuters newsfeed data
set (RCV1-v2).

L
G. Hinton et al. arXiv:1207.0580, Srivastava et al., J. Machine Learning Research 15(2014) 1929-1958 A. Bevan \@'le Queeﬂ Mary

University of London
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DECISION TREES

BOOSTING
ADABOOST,MT

RANDOM FORESTS

71

DECISION TREES
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DECISION TREES

» The cut based [see Data Wrangling] and linear discriminant analysis
methods are useful but limited.

» The underlying concepts of applying Heaviside function constraints on
data selection and on the use of a decision boundary definition (a plane in
hyperspace) of the form of the dot product a’x + # can be applied in
more complicated algorithms.

» Here we consider extension to the concept of rectangular cuts to decision
trees as a machine learning algorithm.

» We will have to introduce the concepts of classification and regression;
and methods to mitigate mis-classification of data.

» The issue of overtraining is something we discussed earlier regarding
optimisation.

o
A.Bevan \:‘Q_‘%’ Queen |\/|al’y

University of London
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DECISION TREES

» Consider a data sample with an N dimensional input feature space X.

» X can be populated by examples from two or more different species of
event (also called classes, categories or types).

» Consider the two types and call them signal and background,

respectively*.

73

» We can use a Heaviside function to divide the data into two parts:
» We can use this to distinguish between regions populated signal and
background:

y(x)

0.8

04F

0.2F

0.6;_ Background

(fails cut)

Signal

(passes cut)

*Can generalise the problem to an arbitrary number of types.

05

1

x_

b

For an arbitrary cut position in x we
can modify the Heaviside function

H(x) = %(1 + sign(x — b))

where b is the offset (bias) from
zero.

o
A.Bevan \G‘Q_al Queen |\/|al’y

University of London
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DECISION TREES

» Decision trees divide the data feature space into a set of hypercubes that are
classified as signal (+1) or background (-1) like.

» Each region can be fitted with a constant to represent the data in that region.

»  We can recursively continue to sub-divide the data until some minimum number
of examples are left in each sub-division.

Can describe the data X2
as the root node.

Example feature space
described by X={x1, x2}

o
A. Bevan ‘a‘Qg_"l Queen Mary

University of London
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DECISION TREES

» Decision trees divide the data feature space into a set of hypercubes that are
classified as signal (+1) or background (-1) like.

» Each region can be fitted with a constant to represent the data in that region.

»  We can recursively continue to sub-divide the data until some minimum number
of examples are left in each sub-division.

The data get divided X

into two partitions.
A
P Cut on the feature

space to separate the
data into two different
regions.

X2<B X2<C

o
A. Bevan ‘(‘ZQQ_" Queen Mary

University of London
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DECISION TREES

» Decision trees divide the data feature space into a set of hypercubes that are
classified as signal (+1) or background (-1) like.

» Each region can be fitted with a constant to represent the data in that region.

»  We can recursively continue to sub-divide the data until some minimum number
of examples are left in each sub-division.

X2
Divide the data again

A
X1 < The feature space gets

further sub-divided.

X2<B X2<C

o
A. Bevan ‘(‘ZQQ_" Queen Mary

University of London
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DECISION TREES

» Decision trees divide the data feature space into a set of hypercubes that are
classified as signal (+1) or background (-1) like.

» Each region can be fitted with a constant to represent the data in that region.

»  We can recursively continue to sub-divide the data until some minimum number
of examples are left in each sub-division.

X2
Divide the data again
x1 < A The feature space gets

further sub-divided
(again).

X2<B X2<C

1 +1 -1 +1 -1 +1 -1 +1

o
A. Bevan ‘(‘ZQQ_" Queen Mary

University of London
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DECISION TREES

» The set of rectangular cuts applied to the

data allow us to build a tree from the root
te =
note.

» We can impose limits on: f N

N :
- — LN N =
» Tree depth (how many divisions are nycZJ bi=g] B2 \XJ<<:\1 o
///Q\\\ , /'/Q\\\ / \\ O
performed). . ‘s () ()
N \7_\/ N
» Node size (how many examples per \xk;c‘ﬂ lek§c4j!

<

partition). / _\\I
__/
» Trees can be extended to more than 2
categories.

The decision tree output for a

» They lend themselves to classifying examples classification problem is

or adapted to make a quantitative prediction

(regression) Gx)=+1or -1

o
A.Bevan \G‘Q_al Queen |\/|al’y

University of London



Decision trees are “weak learners”, as they can take input
features that only weakly separate types of example and
combine those features to increase the separation.

A single tree is susceptible to overtraining, and there are
various methods of reducing this; including limiting the
complexity of a tree, or the limiting the minimum number of
examples in each node.

The decision tree can be extended to an oblique decision tree,
in which a linear combination of the features (instead of a single
feature) is used to classify examples; so the Heaviside function
cut becomes a hyperplane cut.

o
A.Bevan \G‘Qf! Queen Mary

University of London
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BOOSTING

» If a training example has been mis-classified in a training epoch, then

the weight of that event can be increased for the next training epoch;
so that the cost of mis-classification increases.

» The underlying aim is to take a weak learner and try and boost this
into becoming a strong learner.

» This example re-weighting technique is called boosting.

» There are several re-weighting methods commonly used; here we
discuss:

» AdaBoost.M1 (popular variant of the Adaptive boosting method)

» Boosted Decision Trees are known as BDTs

o
A.Bevan Qz’ Queen Mary
Freund and Schapire J. Jap. Soc. Al 14 (1999) 771-780

University of London
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BOOSTING: AdaBoost.M1

» iisthe ith example out of a data set with N examples.
» m is the mth training out of an ensemble of M learners to be trained.

» Step 1:

» Assign event weights of w; = 1/N to all of the N examples.

o
A. Bevan Qg’ Queen |V|al’y
Freund and Schapire J. Jap. Soc. Al 14 (1999) 771-780

University of London
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BOOSTING: AdaBoost.M1

» iisthe ith example out of a data set with N examples.
» m is the mth training out of an ensemble of M learners to be trained.

» Step 1:
» Assign event weights of w; = 1/N to all of the N examples.

» Step 2: for m=1 through M
» Train the weak learner (in our case this is a BDT): Gm(x).
» Compute the error rate €, .
» Calculate the boost factor [, =

Em

l1—¢,
» Update weights for misclassified examples w; Wieln(l/ﬂm) :

&
A.Bevan \@‘Q_gl Queen Mary
Freund and Schapire J. Jap. Soc. Al 14 (1999) 771-780 University of London
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BOOSTING: AdaBoost.M1

» iisthe ith example out of a data set with N examples.

» m is the mth training out of an ensemble of M learners to be trained.

» Step 1:
» Assign event weights of w; = 1/N to all of the N examples.

» Step 2: for m=1 through M

» Train the weak learner (in our case this is a BDT): Gm(x).
» Compute the error rate €,

» Calculate the boost factor [, =

Em

1 —¢,
» Update weights for misclassified examples w; Wieln(l/ﬂm) :

83

» Step 3:
» Return the weighted committee: a combination of the M trees that have been
learned from the data: —e
G(x) = sign Z In [ ] G, (x)
8m

Freund and Schapire J. Jap. Soc. Al 14 (1999) 771-780

A. Bevan \\Qal Queen |V|al’y

rsity of London
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BOOSTING: AdaBoost.M1

» m=1 INITIAL TRAINING SAMPLE »Gy(x)  The Gn{x)are individual

weak learners; each is
derived from a training
using the data.

WEIGHTED SAMPLE > Gy (x)

» m=3 WEIGHTED SAMPLE >G3(X) The m=1 training uses

the original data; all
subsequent trainings
use reweighted data.

The final classifier

» m=M WEIGHTED SAMPLE » G,,(x) outputisformed from a

committee that is a
weighted majority vote

3
[
N

: o l—e¢, algorithm.
G(x) = sign Z In G, (x)
€
m=1 m

&
A. Bevan \QQ:,_J Queen Mary
Freund and Schapire J. Jap. Soc. Al 14 (1999) 771-780 University of London
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RANDOM FORESTS

» Random Forests are constructed from an ensemble of individual trees.

» Each tree in the ensemble uses a randomly selected subset of the feature space, and
the minimum node size is usually set to 1, so the classifier prediction is almost always
accurate.

» The mode (classification) or mean (regression) of the ensemble is the output of the
Random Forest.

» The probability that an example x; is assigned to a given class ¢, is given by
P(c|x;)

P(c|x) = p

Z P(c;| x;)
=1

» and the output score g.(x;) is given by the aggregate over t trees in the forest:

1 4
8:09) == 2 Pfelx)
j=1
» The classification of x; is simply the class ¢ that maximises g.(x,).

Ho, Proc‘:e.edings of the 3rd International Conference on Document Analysis and A Bevan \c\'@l Queen I\/Iary
Recognition, Montreal, QC, 14-16 August 1995. pp. 278-282. = University of London
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ARTIFICIAL NEURAL NETWORKS
MULTILAYER PERCEPTRONS
AUTO-ENCODERS

CONVOLUTIONAL NEURAL NETWORKS
GENERATIVE ADVERSARIAL NETWORKS

NEURAL NETWORKS

o
A.Bevan ‘a;Q_ﬁl Queen |\/|al’y

University of London
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ROSENBLATT'S PERCEPTRON
ACTIVATION FUNCTIONS

ARTIFICIAL NEURAL NETWORKS
BACK PROPAGATION

OTHER REMARKS

EXAMPLE: FUNCTION APPROXIMATION

ARTIFICIAL NEURAL
NETWORKS

o
A.Bevan ‘a;Q_ﬁl Queen Mary

University of London
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ROSENBLATT'S PERCEPTRON

» Rosenblatt!! coined the concept of a perceptron as a probabilistic model for
information storage and organisation in the brain.

» Origins in trying to understand how information from the retina is

p rocessed ] Simplified view of Fig 1 from Rosenblatt’s paper.
Projection R
i ores R Responses
Retina (response i P
function) Rs

» Start with inputs from different cells.

» Process those data: “if the sum of excitatory or inhibitory impulse

intensities is either equal to or greater than the threshold (0) ... then
the A unit fires”.

» This is an all or nothing response-based system.

[1]F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. A.Bevan \@/ Queen I\/Iary

University of London
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ROSENBLATT'S PERCEPTRON

» This picture can be generalised as follows:

» Take some number, n, of input features

» Compute the sum of each of the features multiplied by

some factor assigned to it to indicate the importance of
that information.

» Compare the sum against some reference threshold.

» Give a positive output above some threshold.

&
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. A.Bevan %O Queen Mary
University of London
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ROSENBLATT'S PERCEPTRON

» lllustrative example:
» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the
perceptron is to give an output (value = 1) or not (value

= 0).
Wi 0
+ — -
1
Wo X9 —

[1]F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. A.Bevan \@/ Queen I\/Iary

University of London
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ROSENBLATT'S PERCEPTRON

» lllustrative example:
» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the

perceptron is to give an output (value = 1) or not (value
= 0).

>, > 6 Output

w2
L9

[1]F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. A.Bevan \@/ Queen I\/Iary

University of London
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ROSENBLATT'S PERCEPTRON

» lllustrative example:
» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the
perceptron is to give an output (value = 1) or not (value

= 0).
If wixq1 + woxoe > 0
Output = 1
else
Output =0

[1]F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. A.Bevan \G;QJ Queen I\/Iary

University of London
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ROSENBLATT'S PERCEPTRON

» lllustrative example:

» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the

perceptron is to give an output (value = 1) or not (value
= 0).

If wixq + woxy >0

 This is called a binary 1
OUtpUt = 1 | activation function, and is

a generalisation of the |
Heaviside function to a
'multidimensional feature |
‘space. |

else

Output =0

[1]F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. A.Bevan \G;QJ Queen I\/Iary

University of London
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ROSENBLAIT'S PERCEPTRON

» lllustrative examples:

i}ﬁ/ 5 [ V [
Baseline for comparison,
decision only on value of x; |

— __

[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958.

' Rotate decision

plane in (x1, x2)

W2=1

0 =05

i
|

Shift decision pla
‘away from origin |

University of London
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ROSENBLATT'S PERCEPTRON

» lllustrative example:

» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the

perceptron is to give an output (value = 1) or not (value
= 0).

» We can generalise the problem to N quantltles as

g w;x; + 06
wlx + @is the equation

— f(w X —+ 9) of a hyperplane.

| ‘The argument is just the |
| same functional form of
Fisher's discriminant.

A. Bevan \\Qal Queen |\/|al’y

rsity of London
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ROSENBLATT'S PERCEPTRON

» Given some training data, we can learn the hyper parameters 6 for this
single Rosenblatt perceptron.

» Step 1:
» Choose the loss function and initialise the 0.
» Step 2:

» Optimise the loss function to determine the optimal y,
corresponding to the optimal hyper parameters 6.

» Step 3:

» Evaluate the model performance (e.g. accuracy or some other metric)

o
A.Bevan \G‘Q_al Queen |\/|al’y

University of London



T
Yoo S & -
. R 5 A

INTRODUCTION TO MACHINE LEARNING 97

ACTIVATION FUNCTIONS

» The binary activation function of Rosenblatt is just one
type of activation function.

» This gives an all or nothing response.

» It can be useful to provide an output that is continuous
between these two extremes.

» For that we require additional forms of activation
function.

o
A.Bevan \G‘Q_al Queen |V|al’y

University of London
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ACTIVATION FUNCTIONS: LOGISTIC (OR SIGMOID)

» A common activation function used in neural networks:

1
1+ 6wT:c—|—9

1
1+ elwiz1twaza+0)

nnnnnnnnnnnnnnnnnn
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ACTIVATION FUNCTIONS: LOGISTIC (OR SIGMOID) s

» A common activation function used in neural networks:

| rotate “decision
boundary” in (x1, x2)

— =

S = N

il
]l

‘}—;—%s—a!.“i; . EE— . ,'
| Baseline for comparison, |
decision only on value of x; |

_

oooooooooooooooo
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ACTIVATION FUNCTIONS: HYPERBOLIC TANGENT

» A common activation function used in neural networks:

y = tanh(w' = + 0)
= tanh(wix1 + woxs + 6)

(Often used with 6 = 0)

nnnnnnnnnnnnnnnnnn
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ACTIVATION FUNCTIONS: HYPERBOLIC TANGENT tenh(wra: + wow: +6)

» A common activation function used in neural networks:

1.00
0.95
1.0 y0.90
0.85
0.80

W1—1
wy =0 wo =1 wo = 1

' Baseline for comparison, |
decision only on value of x; |

—

rotate “"decision
boundary” in (x1, x2) ‘

===

Offset (vertically) from |
zero using 0 |

A.Bevan %O Queen Mary

oooooooooooooooo
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ACTIVATION FUNCTIONS: RELU

» The Rectified Linear Unit activation function is commonly

used for CNNs. This is given by a conditional: |

A

102

» If(x<0)y=0 /

0
» otherwisey = x

X

nnnnnnnnnnnnnnnnnn



A

INTRODUCTION TO MACHINE LEARNING 103

ACTIVATION FUNCTIONS: RELU

» The Rectified Linear Unit activation function is commonly
used for CNNs. This is given by a conditional: ¢

» If(x<0)y=0

» otherwisey = x

wi=1wry=0 wi=1,wy=1 wi=1 wy=0.5

Importance of features in the perceptron still *
P ) . P . P A.Bevan \E;Q‘sl Queen Mary
depend on weights as illustrated in these plots. Universityof London
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ACTIVATION FUNCTIONS: PRELU VARIANT

» The ReLU activation function can be modified to avoid gradient singularities.

» This is the PReLU or Leaky RelLU activation function A
» If (x <0)y=a*x
» otherwisey = x g

» Collectively we can write the (P)ReLU activation function as

f(z) = max(0,x) + amin(0, x)

» Can be used effectively for need CNNs (more than 8 convolution layers),
whereas the ReLU activation function can have convergence issues for such a
configurationl(2l,

» If aissmall (0.01) it is referred to as a leaky ReLU functionl'l. The default
implementation in TensorFlow has a=0.2[31,

[1] Maas, Hannun, Ng, ICML201 3.
[2] He, Zhang, Ren and Sun, arXiv:1502.01852 &
[3] See https://qgithub.com/tensorflow/tensorflow/blob/r2.2/tensorflow/python/ops/nn_ops.py A.Bevan \G;le Queen Mary

University of London



https://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf
https://arxiv.org/abs/1502.01852
https://github.com/tensorflow/tensorflow/blob/r2.2/tensorflow/python/ops/nn_ops.py
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ACTIVATION FUNCTIONS: RELU

» Performs better than a sigmoid for a number of
applications!l,

» Weights for a relu are typically initialised with a
truncated normal, OK for shallow CNNs, but there are

convergence issues with deep CNNs when using this
initialisation approachl’l.

» Other initialisation schemes have been proposed to

avoid this issue for deep CNNs (more than 8 conv layers)
as discussed in Ref [2].

[ Maas, Hannun, Ng, ICML2013.

B
A.B WO
[21 He, Zhang, Ren and Sun, arXiv:1502.01852 evan So2 g‘ggﬁfﬂnh{lary



https://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf
https://arxiv.org/abs/1502.01852
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ACTIVATION FUNCTIONS: RELU

» N.B. Gradient descent optimisation algorithms will not
change the weights for an activation function if the initial
weight is set to zero.

» This is why a truncated normal is used for initialisation,
rather than a Gaussian that has x € [— o0, + o0].

y y
0.5 r 0.5 r

0.4+ 0.4}

0.3f

[ Maas, Hannun, Ng, ICML2013.
[21 He, Zhang, Ren and Sun, arXiv:1502.01852

o
A.Bevan \G‘Q_al Queen |\/|al’y

University of London
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ACTIVATION FUNCTIONS: RELU

» N.B. Gradient descent optimisation algorithms will not
change the weights for an activation function if the initial
weight is set to zero.

» This is why a truncated normal is used for initialisation,
rather than a Gaussian that has x € [— o0, + 00]

05, . TensorFlow default
: [ parameters for the
truncated normal are:
u=0.0
o=1.0

0.4 0.4}

0.3f
0.2}

0.1

[11 Maas, Hannun, Ng, ICML207 3.
: ,Ng, ICML2013 A.B WO
[21 He, Zhang, Ren and Sun, arXiv:1502.01852 sven Q'—Q? g‘ggﬁfﬂnmary
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ARTIFICIAL NEURAL NETWORKS (ANNs)

» A single perceptron can be thought of as defining a

hyperplane that separates the input feature space into two
regions.

A binary threshold activation function is
an equivalent algorithm to cutting on a
fisher discriminant to distinguish
between types of training example:

F=wlz+7

or a node in an oblique decision tree.

The only real difference is the heuristic
used to determine the weights.

o
A.Bevan \G‘Q_al Queen |\/|al’y

University of London
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ARTIFICIAL NEURAL NETWORKS (ANNs)

» Asingle perceptron can be thought of as defining a hyperplane
that separates the input feature space into two regions.

» This is a literal illustration for the binary threshold perceptron.

» The other perceptrons discussed have a gradual transition
from one region to the other.

» We can combine perceptrons to impose multiple hyperplanes

on the input feature space to divide the data into different
regions.

» Such a system is an artificial neural network.

o

A.Bevan WO Queen |V|al’y

University of London
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ARTIFICIAL NEURAL NETWORKS (ANNs)

» The simplest general ANN has one input node, one output

node and some number of hidden layer nodes.
1

x (input) )
Approximation by Superpositions of a Sigmoidal Function* o ] R
G. Cybenkot - The Universal Function Approximation

| theorem states that neural networks under

Abstract. In this paper we demonstrate that finite linear combinations of com-

positions of a fixed, univariate function and a set of affine functionals can uniformly some assum ptl ons can app roximate a ny
approximate any continuous function of n real variables with support in the unit

hypercube; only mild conditions are imposed on the univariate function. Qur continuous fu nctions on com pact su b sets Of |
results settle an open question about representability in the class of single hidden I
layer neural networks. In particular, we show that arbitrary decision regions can ann -d | mens | ona | hy p ers pa ce Of rea |

be arbitrarily well approximated by continuous feedforward neural networks with

only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The numbers. !
paper discusses approximation properties of other possible types of nonlinearities - E— ——

that might be implemented by artificial neural networks.

r ) 4'
A.Bevan \GQ_QI Queen |\/|al’y

Key words. Neural networks, Approximation, Completeness. University of London
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BACK PROPAGATION

» For feed forward neural networks like the one described here, we can use the back-propagation
method to update the weight and bias HPs in the network.

» Require differentiable activation functions and loss function (error, E).
» Feed the input feature space vector x through the network to compute the output, and hence E.

» The derivatives of E with respect to the HPs, V E, for this example can then be used to find the
set of HPs corresponding to the minimum loss (or error) of the network using some optimisation
procedure, e.g. gradient descent:

oE ' tthe training epoch
Wij(t +1) = Wij(t) —a Iw. | iis the ith node in layer | of the network
v | j is the jth node in layer K of the network

» The chain rule is used to efficiently compute the set of dE/dw;; requwed for the network, so that
we can then update the weights in the network.

» N.B. The term back propagation is also used to describe the process of using gradient descent
(also known as the delta rulel'l) for mlnlmlsmg the L, loss with a neural network (Stage 1+2 for

training a neural network). errn , —
Thls is for stochastic training, and this is adapted for batch training

«Lby considering the sum over the examples in a batch or mini batch.
L . B ,

See, for example, C. Bishop, Neural Networks for Pattern Recognition, Ch. 4. and Y. LeCun et al., Efficient BackProp, Neural -
Networks Tricks of the Trade, Springer 1998 (Fig. 3). A. Bevan \c\'le Queen Mary
[1] Widrow and Hoff (1960), University of Londlon
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OTHER REMARKS

» When performing stochastic training, the optimisation converges faster when
presenting unexpected examples.

» A pragmatic way to do this is to alternate the presentation of examples from different
classes of event to the optimisation.

» Ensuring equal numbers of different classes are presented to the optimisation will
ensure that the learned model has been able to focus equally on distinguishing
different types of event.

» If you feed in different amounts of training data then this may not be helpful: aim to use
equal amounts of training samples for the different types.

» e.g.a dominant background like t7 with very little signal, then the model learned will
be driven by the dominant contribution to the loss function. This is invariably the
example type with the dominant number of examples presented.

» Changing the weighting of the different components will affect the way the
algorithm learns.

o
A.Bevan \c“Q_sl Queen |\/|al’y

University of London
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EXAMPLE: FUNCTION APPROXIMATION

2

» Consider the model y = x

» This can be learned using an ANN, with a single input, x, and a single output y for each example.
» Model:

» ADAM optimiser

» 1 hidden layer with 50 nodes

» RelLU activation function for nodes in the hidden layer

» wlx + pfor the output node (to give an unlimited real valued output)
» Train with:

» 1000 epochs.

» Gaussian noise overlaid to “simulate” realistic data

» a =0.001

» 10k examples randomly generated in x € [—10,10] for training, and 10k for testing

» Lo loss

o
A. Bevan Qﬁl Queen |\/|al’y

University of London
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EXAMPLE: FUNCTION APPROXIMATION

» The model obtained does not give a good prediction.

Network Response Function 1e7
100 A . 4 %104
1.751 Test and train loss Aloss decreases,
80 1 1.50 - function evolution is 3% 10 indicating no evidence
o 1251 good, no sign of of overtraining.
% 1.00 - overtraining 8 2x10%
40 1 B N
0.75 -
20 - 0.50 -
0.25 A 104 i
0. .
T T T T T T T T T O.OO L T T T T T T T T T T T T
-100 -75 -50 -25 00 25 50 75 10.0 0 200 400 600 800 1000 0 200 400 600 800 1000
X epoch epoch

» Increasing or removing the Gaussian noise will not lead to improvement.

» Increasing the number of epochs or number of training data can yield an
Improvement.

» Changing the network architecture can lead to an improvement.

o
A.Bevan \G‘Q_sl Queen |\/|al’y

University of London
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EXAMPLE: FUNCTION APPROXIMATION

» As before, but now with 10k training epochs.

Network Response Function 1e6
100 A ]
51 Test and train loss : Aloss decreases,
. il function evolution is 104_’ indicating no evidence
60 N good, n.o.sign of of overtraining.
a overtraining

40 -
102
20 -

102 A
-10.0 -75 -5.0 -25 0.0 2.5 5.0 7.5 10.0 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
X epoch epoch

» Able to learn a good model to approximate the target function.

» Can increase the learning rate to learn faster.

» ADAM has built in learning rate decay parameters, so a learning rate of
0.1 will yield a good training with only 1000 epochs; c.f. the previous
page with a = 0.001.

o
A.Bevan \G‘Q_sl Queen |\/|al’y

University of London
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MULTILAYER PERCEPTRONS

... AS DEEP NETWORKS

EXAMPLE: JET FLAVOUR CLASSIFICATION
EXAMPLE: FUNCTION APPROXIMATION

NEURAL NETWORKS
MULTI LAYER PERCEPTRONS

o
A.Bevan ‘aaQ_ﬁl Queen Mary

University of London
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MULTI LAYER PERCEPTRONS
» lllustrative example: Input data example: z = {z1, 29, 23,...,2,}

)

/

e
et

ARNZa N
K

/

Input layer of n perceptrons;
one for each dimension of the
input feature space

nnnnnnnnnnnnnnnnnn
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MULTI LAYER PERCEPTRONS

118

» lllustrative example: Input data example: z = {z1, 29, 23,...,2,}

T

-

RN

7’\

o

>-\

/

Input layer of n perceptrons;
one for each dimension of the
input feature space

|

Hidden layer of some number
of perceptrons, M; at least one
for each dimension of the input
feature space.

o
A.Bevan \GQ_QI Queen |\/|al’y

University of London
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MULTI LAYER PERCEPTRONS

» lllustrative example: Input data example: z = {z1, 29, 23,...,2,}

. i ~
BN 2
SN 7

|

Output layer of perceptrons;
one for each output type. In
this case the network has
only one output.

/ Hidden layer of some number

Input layer of n perceptrons;
P 12y P P of perceptrons, M; at least one

one for each dimension of the , , ,
Ut feature space for each dimension of the input .
P P feature space. A-Bevan WO Queen Mary
niversity of London
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MULTI LAYER PERCEPTRONS AS DEEP NETWORKS
» The term deep network does not have a fixed definition.

» Examples in the literature range from having more than 2 hidden
layers, or having a very large number of nodes in a network.

» We have been using deep network model configurations in HEP for
decades.

» The key point, that is sometimes overlooked, is this:

» The network is trained to a large number of epochs, so that the
model learned can take advantage of subtleties of the data.

» To avoid overtraining the model, deep networks generally require large
training sets, and hence have a significant computational expense.

o
A.Bevan WO Queen |\/|al’y

University of London
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EXAMPLE: JET FLAVOUR CLASSIFICATION

» Quark colour confinement leads to the creation of jets as pairs of
quarks and anti-quarks are pulled apart.

» As a result we don't see bare quarks.

» However we do see many hadrons eliminating from some
underlying quark.

» These hadrons form objects called jets that are reconstructed in our
detectors.

» The nature of the underlying quark is of interest as knowing that
allows us to infer something about an underlying interaction; e.g.
the decay of a Higgs boson to two b-quarks requires that we
accurately identify events with two (or more ) b jets.

o
A.Bevan \G‘Q_al Queen |V|al’y

University of London
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EXAMPLE: JET FLAVOUR CLASSIFICATION

» Consider jet identification in pp collisions at the LHC.
» Vertex, track and calorimeter information are used to identify jets.
» Aim: separate jets into:

» light quarks (u, d, s);

» charm;

» beauty.

» Guest's study uses the anti-kt algorithm for jet reconstruction and
FastJet.

» 8 million jets for training, 1 million for testing and 1 million for validation.

o
Guest et al., Phys. Rev. D 94, 112002 (2016) A.Bevan %O Queen Mary

University of London
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EXAMPLE: JET FLAVOUR CLASSIFICATION

e The dy and z significance of the 2nd and 3rd tracks
attached to a vertex, ordered by dj significance.

g T L] 1 T L g T I ] T T g g T L ] ]
o — b-quark [ n . o [ ~ b-quark . . .
& of —cqux | @ @ i — cquark e The number of tracks with dy significance greater
S F — Light Flavor 3 B g ges) L] G — Light Flavor
§ ol {1 & § § than 1.80.
lL 10 F % lLoo‘s.. lL LL ‘°¥ — . . L B
_ ‘ ~ 1 e The JETPROB [32] light jet probability, calculated
¥ 1 T T as the product over all tracks in the jet of the prob-
o T ability for a given track to have come from a light-
0 ) 100 150 200 250 300 “a 0 ols : '.5 ; 25 0 05 1 15 2 25 :: sls : A‘s s 1
" — “ R " I ” e The width of the jet in 7 and ¢, calculated for n as
8 —aun § —baus 8 — o 8
-~ o = o ~ o ~ oy 1/2
A B - Bl IR S Rt B (Ei priln; )
= = =
8 8 8 8 :
£ N £ i & £ > PT
10 ‘-\‘L“ B 3
e ", 3 | and analogously for ¢.
‘\,L‘_‘"‘: "'\_.\1
. ! o - o L Y ' . . e The combined vertex significance,
0 o0s |l 115 ; 215 3 35 4 4‘5 0‘5 1 15 2: 215 3‘ 35 4 415 [+] : 2l 3 5 6 ; ; 2 10 0 OG‘)S O;‘ 001|5 ooz 0&8 0(110 0035 004
Track 2z, signif. Track 3 z, signif. Number of tracks over gthreshold Jet prob. d 2
> idi/o;
ﬁ T T Ll T T ﬁ ﬂ ﬁ T Ll T T T T T L T - 2
§ R, v § § § | o ] V2illo;
= e = = s T rnaver ] : . :
g " 4 e g g g e where d is the vertex displacement and o is the un-
i ] : = F E . . " .
8 .| y 8 8 g ] certainty in vertex position along the displacement
o o o wo .
°F 3 axis.
w'E 104
~ F 1 .
i ol B ) ] e The number of secondary vertices.
‘o‘ r A L I Il ' I 1 ‘0‘ = L I 1 A L 1 1 ' 1 L 1 L l— uwlmlm N ! A A ' & H 1
0O 005 01 015 02 025 03 035 04 0 005 01 015 02 025 03 035 04 0 05 1 15 2 25 3 35 4 45 &5 [+] 2 3 4 5 6 7 8 9 10
Jot widtn Jotwidih Vertex sign, Number of sacondary vertioes e The number of secondary-vertex tracks.
e — P - 2 L P L e The angular distance AR between the jet and ver-
— b-quark ~— bquark J —bquark ]
I.E P — cquark IE IE — c-quark IE ——cquark t'ex'
B — Light Flavor B k-] — Light Flavor B — Light Flavor
: s : : : - e The d hai leulated as th f th
S ol 1 3 3 3 ] e decay chain mass, calculated as the sum of the
B ] w w E I 3 invariant masses of all reconstructed vertices, where
L\ _ 1 1 particles are assigned the pion mass.
E 3 . . .
i ﬂ” ” L ﬁ ﬂ_l e The fraction of the total track energy in the jet
0 : 3 5 6 ?l' Bl 9l 10 o ; 10 |15 210 b3 0o 05 1 15 2 215 ; 315 4 45 L4 t d t d rt' 1
Number of secondary vertex tracks AR to vertex Vertex mass [GeV] Vertex Energy Fraction assoclate 0 secondary vertices
Guest et al., Phys. Rev. D 94, 112002 (2016) A.Bevan YO Queen Mary

University of London
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EXAMPLE: JET FLAVOUR CLASSIFICATION

» Several different algorithms are used including MLPs

Input Hidden Hidden Hidden
layer layer | layer 2 layer N

{O
O

Output

Shared
weights

» "Experts” are networks that are trained to address a specific
issue. This study constructs “Experts” that are used as inputs to

a final network.
» This is an example of a committee machine.

o
Guest et al., Phys. Rev. D 94, 112002 (2016) A.Bevan %O Queen Mary

University of London
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EXAMPLE: JET FLAVOUR CLASSIFICATION

» Several different algorithms are used including MLPs

Inputs Technique AUC é 10t = ' ' ' e T e E
Tracks Vertices Expert _% —::3::::’:" ]
v Feedforward 0.916 o —— Expert
~ 10° = ----- Tracks+Vertices —
v LSTM 0.917 - NN
v Outer 0.915 8—
v Feedforward 0.912 -g 10° |- =
v LSTM 0.911 S : =
v Outer 0.911
v v Feedforward 0.929 10E E
v v LSTM 0.929 s
v v Outer 0.928 L l |
v Feedforward 0.924 o4 05 06 07 08 09 !
/  LSTM 0.925 Signal efficiency
v' Outer 0.924
v v Feedforward 0.937 5 - 1 1 , ; ; —
v v LSTM 0.937 B R T ks VericessExpert
v v Outer 0.936 T TENW Tracks+ Expert E
7/ v Teedlorward 0931 < e
v v LSTM 0.930 g 5 N ivey !
v v Outer 0.929 z
v v v Feedforward 0.939 E 10— -]
v v v LSTM 0.939 O .
v v v Outer 0.937 |
» They give similar performance. | . _
0.4 0.5 0.6 0.7 0.8 0.9 1

Signal efficiency

» CMS has followed a deep network approach to jet tagging in their latest work (e.g.
H—bb) [see A.M. Sirunyan et al 2018 JINST 13 P05011, CMS PAS HIG-18-016 ].

o
Guest et al., Phys. Rev. D 94, 112002 (2016) A.Bevan %O Queen Mary

University of London
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EXAMPLE: FUNCTION APPROXIMATION (RECAP)

» The model obtained does not give a good prediction.

Network Response Function 1e7

100 A

. 4 % 10*
1.75 - Test and train loss X Aloss decreases,
80 - 1501 function evolution is 3x 104 indicating no evidence
o 1251 good, no sign of of overtraining.
% 1.00 - overtraining 8 2x10%
40 - B N
0.75 4
50 | 0.50 -
0.25 A 104 i
0 4
T T T T T T T T T O.OO L T T T T T T T T T T T T
-10.0 -75 =50 -25 0.0 2.5 5.0 7.5 10.0 0 200 400 600 800 1000 0 200 400 600 800 1000
X epoch epoch

» Increasing or removing the Gaussian noise will not lead to improvement.

» Increasing the number of epochs or number of training data can yield an
Improvement.

» Changing the network architecture can lead to an improvement.

o
A.Bevan \GQ_QI Queen |\/|al’y

University of London
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EXAMPLE: FUNCTION APPROXIMATION

» Now repeat with an MLP: 1:50:50:1 (2 hidden layers each with 50 nodes)

100 A

80 A

60 -

40 A

20 A

Network Response Function

-100 -75 =50 -25 0.0 2.5 5.0
X

7.5 10.0

le8

Test and train loss
function evolution is
good, no sign of

overtraining

0

400 600 800 1000

epoch

200

106 -

104 4

scripts/FunctionApproximation.ipynb

127

Aloss generally
decreases, there are
some indications of

increasing values, but
the divergence is mild.

0

600 800 1000

epoch

200 400

» The 2-hidden layer architecture is able to fit the function much better than
the single layer architecture.

» Increasing the number of epochs or number of training data can yield a

further improvement.

o
A.Bevan \GQ_QI Queen |\/|al’y

University of London
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AUTO-ENCODERS

o
A.Bevan ‘an_‘l Queen Mary

University of London
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AUTO-ENCODERS

» Auto-encoders (AEs) Can be used to implicitly learn
fundamental representations of underlying features of the
data to facilitate:

» Noise removal (e.g. de-noising auto-encoder)

» Dimensional reduction

A.Beva L Queen Mary

Universit y of London
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USING AUTO-ENCODERS

» Sometimes it is difficult to specify what features need to be extracted
from input data to solve a particular problem, as the type of interest
can manifest itself differently under different scenarios.

» e.g.Special Relativity: Properties depend on the frame of reference;

» Data represented via Lorentz invariants provide a clear picture of the
existence of underlying particles via the mass spectrum.

» In analogy AEs can learn representations of the data.
» They have two parts:
» An encoder that maps input features into a different representation;

» A decoder that is used to convert back into the original format.

o
A.Bevan \e‘Q_al Queen |\/|al’y

University of London
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USING AUTO-ENCODERS

» The aim is to learn the mapping T +— h — r

x: input feature space

h: hidden layer giving an alternate

h = f(m) representation of the data
r: reconstruction of x computed by the auto-
r = g(h) — g(f(x)) encoder

» If the AE learns to copy the input feature to the reconstructed output perfectly then ris
not particularly useful.

» The representation given by / can be useful:

» If dim(h) < dim(x) : as the AE is under-compete and learns how to copy x to r using
the most important subset of input features.

» Under-complete AEs can learn something interesting about the input data, which
can be extracted from #.

» AEs with too large a dim(h) can learn to copy x without extracting any interesting
information about the data.

o
A.Bevan \G‘Q_al Queen |\/|al’y

University of London
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USING AUTO-ENCODERS

x: input feature space

h: hidden layer giving an alternate
X —> h —> 7>  representation of the data

r: reconstruction of x computed by the auto-

encoder

Input

feature Output prediction
space x I : h I 5 r of the model

r=g(h)=g(f(z))
h = f(x)
Encoder Decoder
(e.g. layer of an MLP) (e.g. layer of an MLP)

o
A.Bevan \C%‘Q_sl Queen |\/|al’y

University of London



A

INTRODUCTION TO MACHINE LEARNING

EXAMPLE: AUTO-ENCODER

» Dimensional reduction using an AE
configuration of 10 nodes in a
hidden layer:

» Galaxies can be described by 4
parameters (two ellipticities, a
position angle and an amplitude).

» Starts can be described by 2
parameters (radius and
amplitude)

» This auto-encoder configuration
is able to reconstruct an image of
the galaxy and star with noise
removed.

Graff et al., Mon.Not.Roy.Astron.Soc. 441 (2014) no.2, 1741-1759

True Galaxy

-

True Star

133

Reconstructed Galaxy

Galaxy

-

Reconstructed Star

Star

o
A. Bevan Qﬁl Queen |\/|al’y

University of London
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INPUT DATA
CONVOLUTION LAYERS
PADDING
FILTERS
POOLING
MODEL ARCHITECTURES (& INPUT DATA)
DROPOUT

EXAMPLE: PARTICLE IDENTIFICATION AT MICROBOONE

NEURAL NETWORKS
CONVOLUTIONAL NEURAL NETWORKS

o
A.Bevan ‘aQ:._"l Queen Mary

University of London
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INPUT DATA

» CNNs take advantage of spatial correlations of the input
feature space.!l

» This is typically in the form of image data.

» Each pixel corresponds to a feature for each colour that
is encoded in it.

» Greyscale images have a depth of 1, and so the
dimensionality of the feature-space is npixels X Mpixels.’

» Colour images have a depth of 3 (R, G, B); so the
dimensionality of the feature space is 3 X Npixels X Mpixels.”

[1] K Fukushima, Bio. Cybernetics 36 p193-202, 1980. % & {
"Typically CNNs are applied to square images. A-Bevan QQ E%‘ggyeofrlnh/nlary
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INPUT DATA

» An MLP can be used to process
this data, but you loose the
spatial correlations between
information in the image.

» The image can be represented
by a a line of features.

» Doing this removes the spatial
correlations and would naturally
lend itself to being processing
by a perceptron; i.e. f(wTx+0).

» <

» X

This is an 8 by 8 array of pixels, that corresponds
to a 64 dimensional feature space.

o
A.Bevan \c“Q_sl Queen |\/|al’y

University of London
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INPUT DATA

X1 X2 X3 X4 X5 XN
o\ 4\ =2
%% N7\ S
f(wTx+0)

This is an 8 by 8 array of pixels, that corresponds
to a 64 dimensional feature space.

137

An MLP can be used to process
this data, but you loose the
spatial correlations between
information in the image.

The image can be represented
by a a line of features.

But doing this removes the
spatial correlations and would
naturally lend itself to being
processing by a perceptron; i.e.
f(wTx+0).

o
A.Bevan \G‘Q_al Queen |V|al’y

University of London
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CONVOLUTION LAYERS

» X

This is an 8 by 8 array of pixels, that corresponds
to a 64 dimensional feature space.

138

We can split the image up into a smaller grid of
pixels (filter), and search for a pattern in that
grid.

» In this example we take a 3x3 grid of pixels.

» We can compute a numerical convolution
of these 9 pixels using f(wTx+0).

Spatial correlations within this grid of pixels are
used when computing the numerical
convolution.

Larger filters can be used; where odd numbers
of pixels are normally used:

» 1x1: identity transformation preserve the
input image;

» 3x3, 5x5, ... ; compute convolution image.

o
A.Bevan \G‘Q_sl Queen |\/|al’y

University of London
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CONVOLUTION LAYERS

» That same “convolution
filter” can be used iteratively
over the whole input image.

» The output values for each
iteration are just the value of
the output of a perceptron.

Y
t » The set of outputs from
running the convolution
» X . .
filter across the input forms
This is an 8 by 8 array of pixels, that corresponds N i . N
to a 64 dimensional feature space. a new “convolution Image .

o
A.Bevan \G‘Q_al Queen |\/|al’y

University of London
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CONVOLUTION LAYERS

» If you use an M x M filter on an N x N image, the convolved
image is smaller than the original.

flw"z + B)

» <

nnnnnnnnnnnnnnnnnn
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CONVOLUTION LAYERS

» If you use an M x M filter on an N x N image, the convolved
image is smaller than the original.

flw"z + B)

» <

nnnnnnnnnnnnnnnnnn
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CONVOLUTION LAYERS

» <

142

» If you use an M x M filter on an N x N image, the convolved

image is smaller than the original.

» X

8x8 image

flw"z + B)

3x3 filter

6x6 image

nnnnnnnnnnnnnnnnnn
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CONVOLUTION LAYERS

» If you use an M x M filter on an N x N image, the convolved
image is smaller than the original.

' This illustration uses a stride of |

1 1; so the conv filter is applied
to the input image with a shift

» <

of 1 pixel atatimein XandY. |

»X  8x8image 3x3 filter 6x6 image

o
A.Bevan \GQ_QI Queen |\/|al’y

University of London
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CONVOLUTION LAYERS

144

» (M-1)/2 pixels are lost from the border of the input image in
order to create the convolution image.

Image Size Filter Size Convolution image size
8x8 3x3 b6x6
8x8 5x5 4x4
8x8 7x7 2x2
10x10 3x3 8x8
10x10 5x5 6x6
10x10 /x7 4x4
10x10 9x9 2x2

| This illustration uses a stride of 1 |
| - —— e ————

» An NxN image becomes a (N-M+1) x (N-M+1) image*.

» Repeatedly convoluting the image reduces the dimensionality

of the feature space; which can be undesirable.

b
*The border is both sides of the image so you loose (M-1)/2 pixels twice; once for each side.  A.Bevan YQf Queen Mary

University of London
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CONVOLUTION LAYERS: PADDING

» The dimensional reduction of feature space can be
mitigated by padding the original image with a border of

width (M-1)/2 pixels.

» The values of the border padding are set to zero (no
information provided to the convolution layer).

» Now the original image can be convolved with the filter
any number of times (within resource limitations) without
reducing the dimensionality of the input feature space
that contains non-trivial information.

nnnnnnnnnnnnnnnnnn
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CONVOLUTION LAYERS: FILTERS

» Each convolution filter is tuned to identify a given shape
when scanning through an image.

» These can be edge, line or other shape filters.

» By using a set of convolution filters, one can pick out a set
of different features in an image.

» The weights for these filters are usually initialised
randomly using a truncated Gaussian distribution with

output >0.

» This is to avoid negative weights.

nnnnnnnnnnnnnnnnnn
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CONVOLUTION LAYERS: POOLING

» The dimensionality of the features in a convolutional layer is large; numerically it is
convenient to reduce the dimensionality for further processing.

» High resolution images are not required to be able to identify shapes of objects;
» Can make a lower resolution representation and still reach the same conclusion.

» Pooling is a mechanism that allows you to achieve this.I"]

» Define a filter size for pooling (e.g. 2x2) and then perform an operation on the pixels to
compute:

» Maximum value (max pooling): useful to suppress noise when information is
sparse and the number of pixels having a significant value is expected to be low.

» Average value (average pooling): Averaging pixels values can give a smaller
variance on the information contained in those pixels.

» Ref.[1] provides an analysis of these two approaches.

o &
[1] Boureau, Y. L., Ponce, J., & Lecun, Y. (2010). A theoretical analysis of feature pooling in visual WO
recognition. In ICML 2010 - Proc., 27th Int. Conf. on Machine Learning (pp. 111-118) A.Bevan CQ Queen Mary

University of London
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CONVOLUTION LAYERS: POOLING

» The pooling process is applied to each individual part of
the image (i.e. dimensional reduction)

Average pooling is just applying the following to
each set of pixels.

f:%zxi

l

Max pooling is equivalent but taking

f = max x;

The output is a smaller image.

o
A.Bevan WO Queen |\/|al’y

University of London
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CONVOLUTION LAYERS: POOLING

149

» The pooling process is applied to each individual part of

the image (i.e. dimensional reduction)

nnnnnnnnnnnnnnnnnn
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CONVOLUTION LAYERS: POOLING

» The pooling process is applied to each individual part of
the image (i.e. dimensional reduction)
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CONVOLUTION LAYERS: POOLING

» The pooling process is applied to each individual part of
the image (i.e. dimensional reduction)

and so on...

nnnnnnnnnnnnnnnnnn
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CONVOLUTIONAL NEURAL NETWORK (CNN) ARCHITECTURES

» The simplest convolutional neural network (CNN) architecture is:

FULLY

CONVOLUTION SET OF
LAYER WITH CONVOLUTION

CONNECTED
LAYER (MLP-LIKE
SOME SET OF IMAGES: ONE PER [l STRUCTURE) WITH

FILTERS FILTER AT LEAST ONE
PERCEPTRON

» The convolution layer takes an image and applies a set of k
filters to the image.

» Each filter results in a new convolution image as its output.

» All of the features in all of the convolution images are combined
to make a final combined output of the information.

o
A.Bevan %Q Queen Mary

University of London
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CONVOLUTIONAL NEURAL NETWORK (CNN) ARCHITECTURES

» We can include multiple convolution layers layers that may
add to the information extracted from the image.

» We can add pooling layers to reduce the dimensionality.

» e.g. MNIST: handwritten numbers from 0 to 9.

Hdd Hdd
O utputs
32@28 x28 32@14 x14 64@14 x14 64@7 x7 3136 1024
Max-pooling o ion l ng Fully Fully
S 5 kernel 2x2 kernel nel 2 el  connected = connec

e 28x28 input image (e.g. MNIST example).

e 2 convolution layers using 5x5 filter kernels.

e Each convolution layer followed by a 2x2 max-pooling layer.

o 2 fully connected layers leading to 10 outputs. A. Bev \Q,,l Queen Mary

nnnnnnnnnnnnnnnnnn
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CONVOLUTIONAL NEURAL NETWORK (CNN) ARCHITECTURES

» MNIST

» Standard library of hand written numbers for

benchmarking algorithms: 1, 2, 3,4,5,6,7,8, 9, 0.

» Images are 28x28 pixels (greyscale).

» Several examples are shown below

Example: 1 Label: 3

Example: 4 Label: 1

[1] Neural Computation, Volume 22, Number 12, December 2010
http://yann.lecun.com/exdb/mnist/

nnnnnnnnnnnnnnnnnn
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CONVOLUTIONAL NEURAL NETWORK (CNN) ARCHITECTURES & INPUT DATA

» So far we have focussed on monochrome images with a
single number representing each pixel.

» What about colour images?
» These have 3 numbers (r, g, b) describing each pixel.

» Trivial to extend the convolution and pooling processes to
work on images of some arbitrary depth D (=3 for colour).

» 3-fold increase in weight parameters to determine.

» e.g. CFAR10 benchmark training setl1!.

&
[1] https://www.cs.toronto.edu/~kriz/cifar.html A. Bevan \Q‘,Qal Queen |\/|al’y

nnnnnnnnnnnnnnnnnn
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CONVOLUTIONAL NEURAL NETWORK (CNN) ARCHITECTURES & INPUT DATA

» CFAR 10 examples:
airplane %.% V..='~i
automobile EH'!'H‘
e Sml NES ¥ EEE
. HEOENEEEs P
ceer [ O I O 0 0 1 I R
g [ o BN i A PIKY o ' B
rog [y N I O ] I S B
horse ..mm-"n
ship =T =P

0 s I B S B I SR O

&
[1] https://www.cs.toronto.edu/~kriz/cifar.html A. Bevan \a;Qg_ﬂl Queeﬂ Mary

nnnnnnnnnnnnnnnnnn

truck
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CONVOLUTIONAL NEURAL NETWORK (CNN) ARCHITECTURES & INPUT DATA

The DNN selects the image class with the highest likelihood.

Input images have a colour depth (Nchannels) of 3

4..,0"’ """“ . ﬂ‘..\ 3\_‘. :: . )
\ /7 1S y 3l A L >
& s | e 3\& »',::;, - 3 ) e
’ e 155 Ty 58 2048 Joag \dense
= 128

) 4'(()”.,"" ’ 1‘3-\.:::::::::‘ 13 \ 13
5. .......... 3v ! 3 | - R
Lo “q---c Ty - > | »
i 57 3| \ T3 13 dense | |dense
______ :‘-‘:-_::h 3 .::_._.,., >
155 |- 1000
A 192 192 128 Max
. . 2048
Stride Max 128 Max pooling 2048
“of 4 pooling pooling
3 48

- -O-P) " -B
When AlexNet is processing an image, this is what is happening at each layer.

A. Krizhevsky, I. Sutskever, G. Hinton, (2017-05-24), Communications of the ACM. 60 (6): 84-90

[
WO
https://dl.acm.org/doi/10.1145/3065386 A.Bevan T ) Queen I\/Iary

University of London
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CONVOLUTIONAL NEURAL NETWORK (CNN) ARCHITECTURES & INPUT DATA

» More abstract problems can be addressed in the same way.

» Some examples are given below:

» Transient searches can be addressed by stacking images
together to form an image of depth D.

» Tracking problems can be addressed by stacking
measurement data from successive layers.

» More arbitrary problems can be addressed by feeding
pixelised images of 2D correlation plots between pairs of
input “features”. Stacks of these can be fed into a CNN.

nnnnnnnnnnnnnnnnnn
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EXAMPLE: PARTICLE IDENTIFICATION AT MICROBOONE

» MicroBooNE LAr TPC produces images that need to be
interpreted in terms of the underlying neutrino interaction
physics:

» 3 different views of the same v interaction.

» Use existing software available from the web with
many of the techniques discussed in these lectures.

/
ZZ //
7 /1 |V
N A
AT ANV
‘.L : /
'y b // 1%
{ / ’ // Ve
: :- ofe o / Y
1Y %0%P%
Y 1)
/ /

input feature map

MicroBooNE Collaboration, JINST 12 (2017) no.03, PO30107 7 === | iersity of London
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EXAMPLE: PARTICLE IDENTIFICATION AT MICROBOONE

» MicroBooNE LAr TPC produces images that need to be
interpreted in terms of the underlying neutrino interaction
physics:

puBooNE

Purpose

» 3 different views of the same v interaction.

» Use existing software available from the web with
many of the techniques discussed in these lectures.

Used in Demonstrations

UBOONE

Software ref.

LArSoft (7]

uboonecode (8]

LAICV (9]
Caffe (10]

AlexNet (1]
HBOONE _ GoogLeNet [11]

Faster-RCNN [12]
Inception-ResNet-v2  [13]
ResNet [14]

Simulation and Reconstruction

Simulation and Reconstruction
Image Processing and Analysis
CNN Training and Analysis
Network Model

Network Model

Network Model

Network Model

Network Model

1-3
1-3
1-3
1-3
1,2
1

2

W N e

4, October 21

MicroBooNE Collaboration, JINST 12 (2017) no.03, P0O3011

o
A. Bevan Qg’ Queen |V|al’y

University of London
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EXAMPLE: PARTICLE IDENTIFICATION AT MICROBOONE

» MicroBooNE LAr TPC produces images that need to be
interpreted in terms of the underlying neutrino interaction
physics:

puBooNE

» Image resolution matters for the performance of this

convolutional neural network.
Classified Particle Type

uBooN¥E

Image, Network

e [%]

y | %]

p %]

n %]

proton [%]|

HiRes, AlexNet
LoRes, AlexNet
HiRes, GooglLeNet
LoRes, GooglLeNet

73.6 £0.7
64.1 £ 0.8
77.8 £0.7
74.0 £ 0.7

81.3 0.6
77.3 £ 0.7
83.4 £ 06
74.0 £ 0.7

84.8 0.6
75.2 0.7
89.7 0.5
84.1 £0.6

73.1 £0.7
74.2 £ 0.7
71.0 £ 0.7
75.2 £ 0.7

87.2 0.5
85.8 0.6
91.2 0.5
84.6 0.6

pBooNE . - . e . . . .
Table 2. Five particle classification performances. The very left column describes the image type

and network where HiRes refers to a standard 576 by 576 pixel image while LowRes refers to
a downsized image of 288 by 288 pixels. The five remaining columns denote the classification
performance per particle type. Quoted uncertainties are purely statistical and assume a binomial
distribution.

4, October 21

Run J44% Event 2072 o 2018 *
Bevan WO
MicroBooNE Collaboration, JINST 12 (2017) no.03, P03011 A-Bevan YQf Queen Mary

University of London
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GENERATIVE ADVERSARIAL NETWORKS

» Szegedy et al found that small perturbations in the example were sufficient to lead
to example mis-classification.

» The inclusion of some training example that has a small amount of noise added
to it resulting in a change in classification is counter to the aim of obtaining a
generalised performance from a network.

From Szegedy et al,

Correctly classified image Perturbation of image Incorrectly classified resultant image

Szegedy et al, ICLR, abs/1312.6199 "‘
’ A.B W
Goodfellow et al, CoRR, abs/1412.6572, arXiv:1406.2661 evan B2 E%\ggﬁrlnMary



https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1406.2661
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GENERATIVE ADVERSARIAL NETWORKS

» Szegedy et al found that small perturbations in the example were sufficient to lead
to example mis-classification.

» The inclusion of some training example that has a small amount of noise added
to it resulting in a change in classification is counter to the aim of obtaining a
generalised performance from a network.

From Goodfellow
et al,

+.007 x —
. xr +
esign(VyJ (0, x,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Szegedy et al, ICLR, abs/1312.6199 "'
A.B W
Goodfellow et al, CoRR, abs/1412.6572, arXiv:1406.2661 evan 89 UQuetﬁrgl}Aary



https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1406.2661
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GENERATIVE ADVERSARIAL NETWORKS

» Adversarial examples with small perturbations in the input are difficult for networks to
classify because of their linear nature in high dimensional feature spaces.

» e.g.for w'x = w' (x+n) a large value of dim(x) will result in a large change in the
contribution of the perturbed dot product.

» Adversarial training relies on a modification of the cost function with the intention that
the use of adversarial examples in training regularise the optimisation process by
identifying flaws in the model that is being learned.

» This in turn leads to an improved training performance.

» Exploiting the nature of adversarial examples allowed Goodfellow et al., to reduce
the error rate for image classification with MNIST data; beyond the benefits of using

dropout.

» The interpretation of this procedure is that one is “minimising the worst case error
when the data are perturbed by an adversary”.

Szegedy et al, ICLR, abs/1312.6199 “'
A.B WO
Goodfellow et al, CoRR, abs/1412.6572, arXiv:1406.2661 svan 8= E}};‘,ﬁﬁﬂn'},,’n'ary



https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1406.2661
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GENERATIVE ADVERSARIAL NETWORKS

» The idea behind adversarial networks is to find some way to present adversarial
examples alongside data to improve the ability of the model to recognise both the
data and its adversarial counterpart.

» Train two models simultaneously:

4

G: a generative model (the model used to generate adversarial examples for
training)

D: a discriminative model (the model used to make a prediction that an
example is either data or from the generative model)

Train D to maximise the rate of correct outcomes for training examples and

samples from the generative model.
Train G to minimise In( 1- D[G(z2)] )*.

» Over some number of training epochs the generative model G will improve so that
it mimics D better.

—_— == _—_—

* * |t can be problematic to train G in early epochs as it is possible for D to reject samples from G with
4‘ high confidence; so for early epochs one can maximise In(D[G( )]) to overcome this limitation.

Szegedy et al, ICLR, abs/1312.61 99 N
Goodfellow et al, CoRR, abs/1412.6572, arXiv:1406.2661 also see Goodfellow’s Neural Information A.Bevan \@:Q_a;l Q.U.een Mary
Processing Systems proceedings on Generative Adversarial Networks: arxiv:1701.00160. University of London



https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1701.00160
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Adversarial Nets Framework
D tries to make
D(G(z)) near 0,
D(x) tries to be G tries to make
near 1 D(G(z) ) near 1
lefelentlable
function D
X sampled from
data

D is the discriminator network
G is the generator network

X is the input example

z is some input noise

Differ entlable
function ¢

Input noise z

x sampled from
model

M N

(Goodfellow 2016)

&
A. Bevan \G,Qf,l Queen |\/|al’y

Goodfellow’s Neural Information Processing Systems proceedings: arxiv:1701.00160. 2 )5
University of London



http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf
https://arxiv.org/abs/1701.00160
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GENERATIVE ADVERSARIAL NETWORKS

» Use two sets of examples to train: training examples and generated noise
examples.

» Simultaneously optimise the two networks in a combined loss function as a
min-max game (zero sum) to identify the saddle point corresponding to
minimising the loss contribution from the discriminator while maximising the
ability of the generator to fake the data.

1 1
J(D) _iEm,\,pdm log D(x) — iEz log (1 — D (G(z)))
JG) — _ g(D)

» This allows us to optimise the model parameters for the discriminator, 8,
and generator, §'©.

» Use normal optimisation algorithms (e.g. ADAM or some other stochastic
gradient descent algorithm).

s
Goodfellow’s Neural Information Processing Systems proceedings: arxiv:1701.00160. A. Bevan \@:Q_gl Queen I\/Iary

University of London


https://arxiv.org/abs/1701.00160
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GENERATIVE ADVERSARIAL NETWORKS

» GAN'’s are difficult to train, compared with other simpler models (this is
simultaneous training of two models).

» e.g.Spot the generated image example:

» A well written discussion of GANs in the context of HEP can be found in:
Konstantin and Shyamsundar https://arxiv.org/abs/2002.06307.

o
Karras et al., ICLR 2018 arXiv:1710.10196 A.Bevan \Q_al Queen I\/Iary

University of London


https://arxiv.org/abs/2002.06307
https://arxiv.org/abs/1710.10196

SUPPORT VECTOR MACHINES

University of London
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HARD MARGIN SVM

» Identify the support vectors (SVs): these are the points nearest the
decision boundary.

» Use these to define the hyperplane that maximises the margin
(distance) between the optimal plane and the SVs.

o1 o 1p
093 09f
033 085
07f OJf
05§ 05§
043 OAf
03f . osf o
02F 02F

0.1F 0.1

OO 0.1 0.2 03 04 0.5 0.6 0.7 0.8 09 1 0

0

» If we can do this with a SVM - we would simply cut on the data to
separate classes of event.

o
A.Bevan \G‘Q_al Queen |\/|al’y

University of London
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HARD MARGIN SVM: PRIMAL FORM

» Optimise the parameters for the maximal margin hyperplane with:
1

arg min - ||w||?
w,b

» such that y; (w L — b) > 1  (yiis called the functional margin)

» Equivalent to solvmg the following optlmlsatlon problem:

arg min max —||w|| —Zal[y,(w X; — b)—l]

w,b a>0

» Where: w = Zazyzxz and b= —— Z w T — Yi)

1=1

A.Bevan \«Qsl Queen Mary

sity of London
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HARD MARGIN SVM: KERNEL FUNCTIONS

» We can introduce the use of a Kernel Function (KF) to

implicitly map from our input feature space X to some
potentially higher dimensional dual feature space F.

» Define the function: K (z,vy) = (¢(x) - ¢(y))

oo M — -

X

Fe{uq, uz, us}

u

» We don't need to know the details of the mapping; this is the

1 : Il  B.Scholkopf and A. Smola, Learning with Kernels: Support Vector
kernel trick”. P ing wi upp
Machines, Regularization, Optimization and Beyond. MIT Press, 2002.

nnnnnnnnnnnnnnnnnn
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HARD MARGIN SVM: KERNEL FUNCTIONS

» We can introduce the use of a Kernel Function (KF) to

implicitly map from our input feature space X to some
potentially higher dimensional dual feature space F.

» Define the function: K (z,vy) = (¢(x) - ¢(y))

e.g.

r € R" ) I c{¢(z)|z € X}

» We don't need to know the details of the mapping; this is the

1 : Il  B.Scholkopf and A. Smola, Learning with Kernels: Support Vector
kernel trick”. P ing wi upp
Machines, Regularization, Optimization and Beyond. MIT Press, 2002.

nnnnnnnnnnnnnnnnnn
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HARD MARGIN SVM: DUAL FORM

» The problem can be solved in the dual space by minimising
the Lagranglan for the Lagrange multipliers qg; :

— E o; — g ozzozjyzy]x X
i=1

1,]

mn
1
— Z;ozz- — 5 Zaiajyiyjl((x,,;,a:j).
i= o

Dot product KF

» Suchthat:a; >0  and ) aiy;i=0.
» d; are non-zero for SVs only.

» The sum provides a constraint equation for optimisation.

‘*Qs’ Queen Mary

UUUUUUUUU y of London
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SOFT MARGIN SVM

» Relax the hard margin constraint by introducing mis-classification:
» Describe by slack (&€i) and cost (C) parameters.
» Alternatively describe mis-classification in terms of loss functions.
» These are iust wavs to describe the error rate.

><(\l 1

&= distance between the hyper-plane defined by
‘w . . . . . .

| the margin and the ith SV (i.e. now this is a mis-
| classified event).

09

0.8
0.7
0.6

0.5
Cost (C) multiplies the sum of slack parameters in

optimisation.

04

03

0.2

IIII|IIII|IIII|IIII|IIII|IIII.|IIII|IIII|IIII|IIII

MVA architecture complexity is encoded by the KF. |

e — —_— — -

0.1

» These are much more useful!

o
A.Bevan \G‘Q_al Queen |\/|al’y

University of London
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SOFT MARGIN SVM

» The Lagrangian to optimise simplifies when we introduce the slack

parameters
Z&z — _Zazajyzy] (xiaxj)

» Where OSOzi<C

» and as before we constrain:

mn = = — Ee—

The optlmlsatlon problem in dual space |

E O Y; — ‘ is essentially the same for the hard and |
i1 soft margin SVMs.

» The algorithm is designed to focus on reducing the impact of
misclassified events; again using those closest to the decision
boundary to determine that boundary.

A. Bevan \\Qal Queen |\/|al’y

rsity of London
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KERNEL FUNCTIONS

» The KF, K(x,y), extends the use of inner products on data in a vector
space to a transformed space where

K(z,y) = (¢(z) - 9(v))

» The book by

» Nello Cristianini and John Shawe-Taylor, called Support Vector
Machines and other kernel-based learning methods. Cambridge
University Press, 2000 (and references therein)

» discusses a number of KFs and the conditions required for these to be
valid in the geometrical representation that SVMs are constructed from.

» Here I'll focus on the main points and give a few examples of KFs (ones
that are implemented in TMVA).

o

A.Bevan WO Queen |\/|al’y

University of London
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KERNEL FUNCTIONS: RADIAL BASIS FUNCTION (RBF)

» Commonly used KF that maps the data from Xto F.

» Distance between two support vectors is computed and used as
an input to a Gaussian KF.

» Fortwo data x and y in X space we can compute K(x, y) as

» One tuneable parameter in mapping from X to F; given by
I=1/6°

nnnnnnnnnnnnnnnnnn
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KERNEL FUNCTIONS: MULTI GAUSSIAN KERNEL

» Extend the RBF function to recognise that the bandwidth of data
in problem space can differ for each input dimension; i.e. the
norm of the distance between two support vectors can result in
loss of information.

» Overcome this by introducing a I'=1/0; for each dimension:

dim(X)
K(z,y) = H e~ lzi—vill” /o

1=1

» Down side ... we increase the number of parameters that need to
be optimally determined for the map from X to F.

o
A.Bevan \G‘Q_al Queen |\/|al’y

University of London
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KERNEL FUNCTIONS: MULTI GAUSSIAN KERNEL

» The multi-gaussian kernel does not include off-diagonal terms that
would allow for accommodation of correlations between parameters.

» De-correlate the input feature space to overcome this deficiency,
or alternatively one could implement a variant of this kernel
function using:

K(z,y) =e @9 2 (@=y)

» Here 2 is an n x n matrix corresponding to the covariance matrix
for the problem.

» However this would be very computationally expensive to
optimise (and is not implemented in TMVA).

o
A.Bevan \G‘Q_al Queen |\/|al’y

University of London
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KERNEL FUNCTIONS: POLYNOMIAL

» There are many different types of polynomial kernel
functions that one can study.

» A common variant is of the form:

p d
K(x,2)=(Kx-2)+ c)d = [Z X;Z; + c]

i=1
» cand d are tuneable parameters.

» The sum is over support vectors (i.e. events in the data set
for a soft margin SVM).

nnnnnnnnnnnnnnnnnn
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KERNEL FUNCTIONS: PRODUCTS AND SUMS

» Valid (Mercer) kernels satisfy Mercer’s conditionst*). This
allows us to construct new kernels from known Mercer
kernels that are products and sums.

» The sum of Mercer KFs is a valid KF.

» The product of Mercer KFs is a valid KF.

* Mercer's conditions require that the Gramm matrix formed from SVs is positive semi-definite. This is a
consequence of the geometric interpretation of SVMs given x is real. Modern extensions of the SVM

construct allow for complex input spaces, and for example can be based on Clifford algebra to
accommodate this extension.

Complex input spaces are of interest for electronic engineering problems.
N.B. It is conceivable that one could be interested in using these if an amplitude analysis were to be

written using SVMs to directly extract phase and magnitudes... but that could also be incorporated by
mapping the complex feature space element into a doublet of reals.

J. Mercer. Phil.Trans.Roy.Soc.Lond., A209:415, 1909. A.Bevan \*Qsl Queen I\/Iary

rsity of London
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EXAMPLES: CHECKER BOARD

» Generate squares of different colour.
» Use SVM to classify the pattern into +1 and —1 targets.
» Hard margin SVM problem; but can solved for using soft margin SVM.

» Not easy to solve in 2D (x, y) with a linear discriminant, but e.g. a 3D space of
(x, y, colour) allows us to separate the squares.

X = F

» Want to find a KF that approximates this mapping.

o
A.Bevan \eaQ_f,l Queen |\/|al’y

University of London
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EXAMPLES: CHECKER BOARD

» Generate 1000 events in the blue and red squares and give
each event x and y values.

~

' This is the ideal feature space that we would like to
‘\ . .

- | implicitly map into.
| - |

Because we implicitly do the mapping via choice of
KF, in practice we don't explicitly map into this

space; but we implicitly map into another space that |

we hope will be approximately topologically
equivalent.
qu

= o
(%4}
. —r" . o
SR N
LN

2
T
o N\
J N\

» e.g.Use a multi-Gaussian kernel function with '1=1, ;=2 and

cost of 104 (not optimised) to see what separation we can
obtain.

A.Bevan \Qal Queen I\/Iary

rsity of London
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EXAMPLES: CHECKER BOARD

» Correctly classified events Incorrectly classified events

- 1 — .:.......... —s ...-.... -' " .-... ..' o .."‘. .0 .- . .. ':,..o o 00 o >
0.9 . ‘- . :.- .. .-..:.-:_:. K _',. -,.:: L .'. ‘... .' N ot et _
o8 R 0.8

0.3F

- T I:I_]';I.I TT |‘I I..I.l-li I.'I-:I.l I I‘.I.'I_l I.I'I I‘].I. |°|:.1'J.1.| .l"‘.l. |.|J' I..|..|_I I I:.:j

R R R RN RN RN R R
S
o s ;% o
o >

» Signal mis-classification rate ~3.3%.

» Background mis-classification rate ~3.7%.

nnnnnnnnnnnnnnnnnn



INTRODUCTION TO MACHINE LEARNING

EXAMPLES: CHECKER BOARD

187

» The confusion matrix ([in-]correctly classified events) for this

example shows a high level of correct classification:

| Background rejection versus Signal efficiency |

1
_I LU I LI I I | I LI I I | I T I T I L I LI I I | I IIIIIIII I I_
s & N
-16 0.9 __u ........... —
2 u ]
0.8 e e =
gl -
[ -
3 07 S SR NSNS SIS SN SR SN SN S — ]
5 -
O 0.6 =i e e e e e e —]
“ —
m -
)] SNURORS PR SRS PSS S S SIS NSRS S, S A
0.4 :_..... ........................................................................................................................... —_—
- MVA Methoa’ -
0.3 :_ .................. SVM ................ ............... ............... ............... ................ ........... E
0.2 :I 111 I 1111 I 1111 I | | I 111 I | | I 1111 I | | I 111 I L1 1 I:

0 01 02 03 04 05 06 07 08 0.9 1

Signal efficiency

Number of entries

2001

150}

100

50

0

o

0.1

| S(true) | B(true)

0.2

0.3

— Signal

— Background

945

0.4

29

0.6

33
967

0.8

0.9 1
SVM Output

» This SVM does a good job of separating signal from background

» An optimised output would provide a better solution.

» BDTs and NNs work well with this kind of problem as well.

o
A.Bevan \G‘Q_sl Queen |\/|al’y

University of London
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EXAMPLES: CHECKER BOARD

» Optimised results for comparison: Very similar responses.

TMVA overtraining check for classifier: BDT
"« Slgnal (trdining sample) ' 1

% Sighal (tes! sampld)
16 Background (test sample)  * Background (training sampie)
Kolmogorov-Smirnov test: signal (background) probability « 0.008 .

(1/N) dN / dx

14 .
AdaBoostBeta = 0.631 b
12 NTrees = 095 3
BDT 10 MaxDepth =3 EES
A7 MinNodeSize :g
8 12
13
6 =
1<
-4
4 1z
1%
2 .
! ;
02 015 01 005 0 005 01 015 0.2

BDT response

TMVA overtraining check for classifier: SVM_RBF

!+ Sighal (tralning sdmple) ' 3
* Background (training sampie) J

(1/N) dN/ dx

Gamma = 4,654
C = 9,983

SVM
RBF (2) 0p

WOMlow (5,8): (0.0, 0.0)% 7 (0.0, 0.00%

05 06 07 08 09
SVM_RBF response

1", i Signal (test sampie) | |+ Sighal (training shmple)
i 25 Background (test sample) * Background (training sampile)_]
€

Kolmegorov-Smirnov test: signal (background) probability = 0.608 (0.115)

20F Order = 9
Theta = 0.984 2
C = B8.78 -
15 e
: i
10 )
- s
: Y
5FE &
Ed
. 2
0 I’lzi‘fn"'_. e el W s = g
0 0.2 0.4 0.6 08 1
SVM_Poly response
1": 18 ignal (test sampie) * Sighal (tralning shmple)'
Z 7] Background (test sample)  * Background (training sample)_J
2 Exumqmv-smlmov test: signal {background) prebability = 0.014 (0.545) o
g 14 Gamma_x = 4.410
12 E Gamma_y = 4.750
: C = 9,519 §
10p o
P e
8F i
6B s
]
4 :"/ 4= By
2 s + 3
L7 s 'y 2
o //f’llﬁ’lr/ﬂfﬂpw g

08 09

05 06 07
SVM_MG response

01 02 03 04

SVM
Polynomial (1)

SVM
Multi-Gaussian

(3)

Trained using the hold out method of cross validation (what is

normally done in TMVA), with optimised hyper-parameters. N
A. Bevan ‘(‘ZQQ_" Queen Mary

University of London
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EXAMPLES: H— 7+7- (HIGGS KAGGLE DATA CHALLENGE)

» Use the Kaggle data challenge sample of signal and
background events. LHC data (from ATLAS).

» Packaged up in a convenient format (CSV file).

» Sufficient description of variables provided for non-HEP
users to apply machine learning (ML) techniques to HEP
data.

» Real application to compare performance for different KFs
and different MVAs.

https://www.kaggle.com/c/higgs-boson

nnnnnnnnnnnnnnnnnn
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EXAMPLES: H— 7+7- (HIGGS KAGGLE DATA CHALLENGE)

> Use 10 varlables as mputs 20K events.

.23

) MMC

2) transverse mass between MET and lep
3) Visible invariant mass of H

4p 1(H)

5) R between Thad and lepton

6) pr(tot)

7) 2pT

8) pr(lepton)/pt(had T)

9) MET & centrality

IO) ETtotaI

(1/N) dN/ 13.6
(1IN) dN/ 7
(1/N) dN/ 9.2

9

(1IN)dN/ 12 =
(1N)dN/ 3.76 1=

(1/N) N/ 0.12

(1/N)dN/ 20.3
(1N)dN/ 0.19 5
(1/N) dN/ 0.0725 |

, This selection of variables is not _
| optimised, and is selected in order to |
show a physics example for
illustrative purposes.

e = = el

(1N)dN/ 24.9 1

o
A. Bevan Qg’ Queen |V|al’y

PRI_met_sumet 1 University of London
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EXAMPLES: H— 7+7- (HIGGS KAGGLE DATA CHALLENGE)

» NOTE: this is an illustrative example - not a fully optimised
analysis of the sample; hyper-parameters are optimised.

THVA ovetraining check for clasafer: BDT
3 g ' k] i Signal (test sample) '+ Sighal (training shmple) ;
= > 7 77 Background (test sample)  * Background (training sample)—
= 9 - Kolmogorov-Smirnow test: signal (background) probability = 0.015 {0.33) -
§ AdaBoostBeta = 0.598 g . 3 Order = 3 .
= NTrees = 22 - 5 :._ Tt: :r : 9.54090 _:
BDT MaxDepth =2 ' s eta = 2 : E3 SVM
MinNodeSize = 5% - B 15
| e 0 ¥ Polynomial (1)
Spllf)’ as ioaf jz Polynomia
optimisation I ? E
& 1z
chooses a low i P 1¢
3 32
number of trees. o 22 el ¢ . 4 3¢
-1 08 06 -04 -02 0 0.2 04 0.6 0 0.2 0.4 0.6 0.8 1
BDT response SVM_Poly response
THVA overtraiing check forcasar: SVUWG
1\'; 10 ignal (lest sample) ‘ I (training sample) i § 10 gnal (fest ) +' Signal [trainind samplé) i
z Background (lest sample)  * Background (training sample) {  Z 7] Background (test sample) = * Background (training sample)
% g [ Koimogora-Smirnov test: signal (background) probabitity = 0 (0206 % g |LK0imogorov-Smirnov test: signai (background) probabity = 'F( 0 N

¢ = 0.4076 SVM

i Gamma = 0.5049
SVM - C = §.9996 10 Gammas..

@
LI LA
1

6': § -§ - -
RBF (2) ' 12 : 2 Multi-Gaussian
oF 4z sfF g
g I + iH (3)
2~ o _‘ﬁ 2k E
13 1z
18 Js

0. 02 03 04 05 06 07 08 09 . 0.1 02 03 04 05 06 07 08 09
SVM_RBF response SVM_MG response

Trained using the hold out method of cross validation (what is

b
normally done in TMVA), with optimised hyper-parameters. A-Bevan WO Queen Mary

University of London
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EXAMPLES: H— 7+7- (HIGGS KAGGLE DATA CHALLENGE)

» SVM provides comparable performance to BDT (and

neural networks)*.

Background rejection versus Signal efficiency
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Bevan et al., proc CHEP 2016

TMVA

L L | L | LI | LI | LI L LI
—_— ! ! ! ! |
..........................................................................................

.....................................................................................................................................

R T T R R LR LR LR LR TS, T T

MVA Method ................ o ............... .........
SVM MG

o1 02 03 04 05 06 07 08 0.9

1

Signal efficiency

*This general conclusion has been reached in one form or another by people studying BDTs vs SVMs and NNs vs SVMs for
HEP problems. The take home message is that SVMs require less data to train in order to obtain a generalised result (follows
from the fact there are fewer hyper-parameters to determine for SVMs vs other algorithms).
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EXAMPLES: HH— BBz +7- (ATLAS - OFFICIAL RESULT)

» ATLAS recently reported limits on resonant and non-
resonant production of HH via bbt+t-.

) [pb]

E L~ MMISSM Scalar (tanf; = 2) ATLAS " The standard analysis shown here uses a BDT for
Y - 13 TeV, 36.1 fb"! both channels that contribute to the final state:
I
I A-1
- > Two hadronically decaying 7 leptons.
< F
D N . .
1072 > One hadronically and one leptonically

decaying .

o " Results for the SM search are 12.7 times the
~ Bulk RS Graviton (k/M,, =1.0) *— Obs 95% CL limit L
______ Exp 95% CL limit Standard Model expected sensitivity.

-:10

+ 20

— HH — bbtr) [pb]
||||||_||‘ T

kk
[T TTTTm

o (G

PO [N SN TN TR W (NN SN S ST SN Y SN SN ST SN NN SR SN TN SRR NN VAN SO TN SR NN TR SR SN TN SN SN S S N |
300 400 500 600 700 800 900 1000
Resonance Mass [GeV]

o
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EXAMPLES: HH— BBz+7- (ATLAS THESIS)

» A student working on this mode also looked at using SVMs
(instead of BDTs) for the analysis.

» Similar performance obtained to the official result when using an
SVM for both ROC curves and limit plots.

ROC curves for different mass points in the 2HDM search, using one of the trigger lines for the bbt*z- channel.
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é 0.8 C : ] J‘;? : i é 0.96 E
o = | MVA Method: : : : @ (.85 f—-| MVA Method: m - | MVA Method:
0.7 r BDT Fold 1 S S— i AM ] : BDT Fold 1 . : 0.94 _ BDT Fold 1 e __
: BDT Fold 2 : 0.8 __ BDT Fold 2 e : BDT Fold 2
0.6 — SVM Fold 1 S0 U U SRS S S W : SVM Fold 1 ] 092:. SVM Fold 1 NS S S
F i : - ' . 0.75 [ e S = .
SVM Fold 2 i ‘ SVM Fold 2 ; , , ‘ SVM Fold 2
0.5 =t Laosay I Ll I Ll I Ll l L l I | Ll I Ll ] 0.7 i bl l Ll d | el I PR SO l bl l raaa 0.9 :L fooceaen) 3 1 I I 3 l I 1 1 l 3 s I l Josseasd n ——
05 055 06 065 0.7 075 08 085 09 0.95 1 0.7 0.75 0.8 0.85 0.9 0.95 1 0.9 0.92 0.94 0.96 0.98 1
Signal efficiency Signal efficiency Signal efficiency
(a) 2HDM (mpy = 300 GeV) (b) 2HDM (mpy = 500 GeV) (c) 2HDM (my = 800 GeV)

» SVMs less susceptible (than BDT) to overtraining for small samples.

o
T. Stevenson, CERN-THESIS-2018-119 A.Bevan %O Queen Mary

University of London
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EXAMPLES: HH— BB+t (ATLAS THESIS)

» A student working on this mode also looked at using SVMs

(instead of BDTs) for the analysis.

» Similar performance obtained to the official result when using an
SVM for both ROC curves and limit plots.

- BDT

95% CL Limit on o, X BRy, - -opee [PD]
o

I Illllll
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==+ exp(H, LTT BDT (2HDM), syst, 36.1 fb-1)

exp (H, LTT SVM (2HDM), syst, 36.1 fo-1)
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Figure 11.5: Expected limits for the BDT (black) and SVM (blue) at 95% C.L. on the cross-section times
branching ratio of the 2HDM heavy scalar Higgs, H — hh — bbrT, process in the LTT channel.
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Figure 11.6: Expected (dashed black) and observed (solid black) limits using SVMs at 95% C.L. on the
cross-section times branching ratio of the 2HDM heavy scalar Higgs, H — hh — bbrT, process in the LTT

channel.
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EXAMPLES: SVM HINT APPLIED TO CMS DATA

» Uses libsvm with an RBF kernel function to optimise two parameters: C
and I.

» Benchmark example of searching for top squark pair production with
stops decaying into the lightest supersymmetric particle (LSP) and a

top quark.

» Could use the ROC area under the curve (AOC) to optimise on, but
this is not directly related to the result being produced.

» Instead use the Azimov estimate of the significance of the result as
the figure of merit to compare and optimise performance on:

Zy = [2 ((s +b)n (52 1 b()s(ljr Z)Cfg)] b [1 . b(bg_ésgg)]) 1/2

This is the median discovery significance from the Poisson form of the signal (s) and background (b), with an

uncertainty on the background of oy.
M. Sahin et al., Nucl. Instrum. Meth. A838 (2016) 137-146.

o
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EXAMPLES: SVM HINT APPLIED TO CMS DATA
» The variable sets used for the SVM-HINT paper are

Variable Set 1 | Set 2 | Set 3 | Set 4 As with other work on using ML methods the
P, . . expected result that the combination of high
n level and low level (derived and primitive)
PT.jet(1,2,3,4) features provides better performance than

Mjet(1,2,3,4) using just one of those sets.
PT,b jet1

b jet1
Njet

low-level

Results on the next two pages illustrate this.

Ny jet
Bt
Ht

mt

%
Mo

A(W, 1)

m(l, b)
Centrality

Y

Hrp-ratio
Arpmin (1, 0)
A¢min(J1,2: #1)

high-level

B
M. Sahin et al., Nucl. Instrum. Meth. A838 (2016) 137-146. A. Bevan \a;Qg_ﬂl Queeﬂ Mary
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EXAMPLES: SVM HINT APPLIED TO CMS DATA

» Results are turned into a probabilistic score using a

sigmoid function:

f

exp(—t)

1

14-exp(—t)

. 1+exp(?)
%) 12 <« §2]
§ Zp=11.5 —signal 1 §
! %)
[h] = . c (b}
5 Background 10 3 5,
= 10°E : = = 10
q-) - i C O
Q0 - . o)) 0
£ g @ £ B
2 H 5 Z f
1 ©)

2 - 10°E
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10E ~—\ 1 10E

E 1o
;L Variable set 1 1
S VU TN B Cid | AL
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SVM Probability

M. Sahin et al., Nucl. Instrum. Meth. A838 (2016) 137-146.
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EXAMPLES: SVM HINT APPLIED TO CMS DATA

» Results are turned into a probabilistic score using a

sigmoid function:

(_exp(—1)
1l £ 1+exp(—t)
Py = 1{f) )
. 1+exp(t)
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M. Sahin et al., Nucl. Instrum. Meth. A838 (2016) 137-146.
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SYMS: SUMMARY AND MISCELLANEOUS NOTES
» Use SVMs when:

» You have small or very small training examples.

» If you care about obtaining a generalised result (reproducibility of
the output matters even if the data fed to the algorithm changes)
and are having difficulty with other algororithms (e.g. BDT, ANN, ...).

» Computing time/resource (esp. memory) is not a problem.

» Do not use an SVM when:

» You have a lot of training examples and/or very little computing
resource.

L
A.Bevan \c“_'l Queen |\/|al’y

University of London
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SVMS: SUMMARY AND MISCELLANEQUS NOTES

» We've looked at the hard and soft margin SVMs.

» The algorithm stems from the same linear separation problem that is addressed by
Rosenblatt’s perceptron paper.

» However this focusses on how far an example is from the margin defining the
separating hyperplane.

» Can’t understand the mapping from the input feature space to the dual space (but we
don’t have to).

» SVMs are widely used outside of HEP.

» They have been used for a broad range of physics studies in HEP, but the algorithm has
not been widely adopted.

» There are specific reasons why you would or would not want to use the algorithm.

» Searches where you have limited training examples available (e.g. SUSY or Higgs BSM)
are cases where you might want to look at the algorithm.

o
A.Bevan \G‘Q_al Queen |\/|al’y
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K-NEAREST NEIGHBOURS (AKA K-MEANS)

» This is a clustering algorithm, and an example of
unsupervised learning.

» Aim: determine the centroid positions C of K clusters in
the data containing N examples using a Euclidean
distance from the cluster mean to some data example.

» Optimisation: The variance of the clusters is minimised in

order to determine the corresponding means of the
cluster.

nnnnnnnnnnnnnnnnnn



% Following Section 14.3.6 of Hastie, Tibshirani, Friedman, Elements of Statistical Learning

INTRODUCTION TO MACHINE LEARNING 204

K-NEAREST NEIGHBOURS (AKA K-MEANS)

» Step 1:

» Given C compute the total cluster variance and minimise this with respect to
the means of the clusters. xi; ith example

K
. 2 Ni: Number of examples in Kth cluster
min, E N, E || x;, —my || k P

c,{m} my: Centroid of Kth cluster
T k=1 C@i)=k k: Cluster index

» This gives the current mean positions of the clusters.

» Step 2:

» Given a set of means m, minimise these by assigning elements to the closest
current cluster mean. i.e.

CGi) = argmin g | |5, — my| |
» Step 3:

» Iterate until the assignments stabilise.

o
A.Bevan \GQ_QI Queen |\/|al’y
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K-NEAREST NEIGHBOURS (AKA K-MEANS)

» This example shows successive iterations of the K-means
algorithm to a set of data with K=3.

Initial Centroids Initial Partition
— This algorithm has
R the number of
- cie
K clusters, K, as a
; e parameter.
o .6: ;--' ., *$ 7. .
o ST forhe Clustering results
will depend on
4 2 0 2 4 6

the choice of K.

Iteration Number 20

Colour indicates
example
assighment to a
given cluster.

Elements of Statistical Learning (2nd Ed.) (©Hastie, Tibshirani & Friedman 2009 Chap 14 N
A.Bevan %Q Queen Mary

University of London
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EXPLAINABILITY AND INTERPRETABILITY

» The issue of how to explain the model, and how to interpret it
is challenging.

» e.g.why was a given prediction made?
» Event classification / decision making

» Real value prediction (e.g. signal strength in a score)

» There is no consensus on how to approach this problem; it is
an active research area.

» Highlight just a few ways we can help to elucidate our
models.

o
A.Bevan u Queen Mary
Univ
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EXPLAINABILITY AND INTERPRETABILITY

» CNN filter maps provide information about shapes and colour
that can be used to interpret how features are identified.

Label assignments

» Requires effort to “see what is happening in may cases”

B
Krizhevsky et al., Neural Information Processing Systems conference proceedings. A. Bevan \a,le Queeﬂ Mary

University of London
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EXPLAINABILITY AND INTERPRETABILITY

» Some problems have simpler filter interpretations.

Input images

Th

ey iy, 1st Conv layer

Mog e, e
€04, 7,,’,"/’0 10y,

s'g"lo/.g'7 9

2nd Conv layer

3rd Conv layer

L
A. Bevan, https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0392 A. Bevan ‘c«,le Queeﬂ Mary
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EXPLAINABILITY AND INTERPRETABILITY

» Some problems have simpler filter interpretations.
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EXPLAINABILITY AND INTERPRETABILITY

» There are methods that use gradients and back-propagation to
indicate which local regions of an image lead to a particular decision
for CNNs: e.g. GradCam, Guided Back Propagation and variants
thereof.

Original Image Grad-CAM Grad-CAM+ + Original Image Grad-CAM Grad-CAM+ +

Two girls focussed on their faces on a sunny day A motocross bike race four little kids are riding a bike race

» There are also generalisations for DNNs.

B
A. Chattopadhyay et al., https://arxiv.org/abs/1710.11063 A. Bevan \@,le Queeﬂ Mary
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EXPLAINABILITY AND INTERPRETABILITY

» There are methods that use gradients and back-propagation to
indicate which local regions of an image lead to a particular decision
for CNNs: e.g. GradCam, Guided Back Propagation and variants
thereof.

Original Image Grad-CAM Grad-CAM+ + Original Image Grad-CAM Grad-CAM+ +

Two girls focussed on their faces on a sunny day A motocross bike race four little kids are riding a bike race

» There are also generalisations for DNNs.

B
A. Chattopadhyay et al., https://arxiv.org/abs/1710.11063 A. Bevan \@,le Queeﬂ Mary

University of London
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EXPLAINABILITY AND INTERPRETABILITY

» Complicated models that rely on function approximation
through deep abstractions, or implicit mappings into high
dimensional feature spaces can be challenging to understand.

» Interpretation of their results can be straightforward or
challenging.

» These however are one class of models; other machine learning
algorithms can be more transparent (e.g. Decision Trees).

» Bayesian networks (not discussed here), require causal input in
order to construct models, and are by construction easier to
interpret than the methods discussed here.

A.Bevan \«Qsl Queen Mary

Universit y of London
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DATA:

MNIST

CFAR-10

CFAR-100

KAGGLE

UCI ML DATA REPOSITORY

TIMIT

RCV1-V2
DEEP LEARNING USING LOW LEVEL FEATURES
CROSS VALIDATION

APPENDIX
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APPENDIX: DATA — MNIST

» MNIST is a standard data set for hand writing pattern recognition. e.g. the
numbers 1,2, 3,...9,0

eeeeeeeeeeeeee

Example: 4 Label: 1
0 - . Example: 2 Label: 4 o 0
5 5
° 5
10
10 10 10
B 15 15 15
20 2 2 %
2 2 2 »
Q 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 ) G 0 s 20 35

» 60000 training examples

» 10000 test examples

» These are 8 bit greyscale images (one number required to represent
each pixel)

» Renormalise [0, 255] on to [0, 1] for processing.
» Each image corresponds to a 28x28 pixel array of data.

» For an MLP this translates to 784 features.
http://yann.lecun.com/exdb/mnist/ A.Bevan \c\‘é_gl Queeﬂ Mary

University of London
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APPENDIX: DATA — CFAR-10

» 60k 32x32 colour images (so each image is a tensor of
dimension 32x32x3).

» This is a labelled subset of an 80 million image dataset.

=R - B~

airplane

» 10 classes: automobic CoEIAITNE Wit Bl S

ot Emall WED ¥ B
=  HESENEEEs P
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v EEEWESSAEE
o RIS ) PR T TR
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https://www.cs.toronto.edu/~kriz/cifar.html
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APPENDIX: DATA — CFAR-100
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» 100 class variant on the CFAR10 sample:

» 32x32 colour images (so each image is a tensor of

dimension 32x32x3).

Superclass

aquatic mammals
» 100 classes: "

flowers

food containers

fruit and vegetables

household electrical devices

household furniture

insects

large carnivores

large man-made outdoor things

large natural outdoor scenes

large omnivores and herbivores

medium-sized mammals

non-insect invertebrates

people

reptiles

small mammals

trees

vehicles 1

vehicles 2

https://www.cs.toronto.edu/~kriz/cifar.html

Classes

beaver, dolphin, otter, seal, whale

aquarium fish, flatfish, ray, shark, trout

orchids, poppies, roses, sunflowers, tulips
bottles, bowls, cans, cups, plates

apples, mushrooms, oranges, pears, sweet peppers
clock, computer keyboard, lamp, telephone, television
bed, chair, couch, table, wardrobe

bee, beetle, butterfly, caterpillar, cockroach
bear, leopard, lion, tiger, wolf

bridge, castle, house, road, skyscraper

cloud, forest, mountain, plain, sea

camel, cattle, chimpanzee, elephant, kangaroo
fox, porcupine, possum, raccoon, skunk

crab, lobster, snail, spider, worm

baby, boy, girl, man, woman

crocodile, dinosaur, lizard, snake, turtle
hamster, mouse, rabbit, shrew, squirrel

maple, oak, palm, pine, willow

bicycle, bus, motorcycle, pickup truck, train
lawn-mower, rocket, streetcar, tank, tractor

o
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APPENDIX: DATA — KAGGLE

» Well known website for machine learning competitions; lots of problems and
lots of different types of data.

» Also includes training material at:

» https://www.kaggle.com/learn/overview

» e.g. Intro to machine learning includes a data science problem on
predicting titanic survivors from a limited feature space.

» Since the outcome is known, this is a good sample of real world data to
try out your data science skills.

Getting Started Prediction Competition

Titanic: Machine Learningfrom Disaster"

Start here! Predict survival on the Titanic and get familiar with ML basics

Kaggle - 11,175 teams - Ongoing

Data Notebooks Discussion Leaderboard Rules

o
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APPENDIX: DATA — UCI ML DATA REPOSITORY

UCIH cirx>

Machine Learning Repository

» Hundreds of data sets covering life sciences, physical
sciences, CS / Engineering, Social Sciences, Business, Game

and other categories of data.

» Different types of problem: including Classification,
regression and clustering samples.

» Different types of data: e.g. Multivariate, univariate, time-
series etc.

» https://archive.ics.uci.edu/ml/datasets.php

o
A.Bevan u Queen Mary
Univ

ersity of London
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APPENDIX: DATA — TIMIT

» A corpus of acoustic-phonetic continuous speech data,
provided with extensive documentation.

» Includes audio files and transcripts

» 630 speakers, each with 10 sentences, corresponding to
a corpus of 25200 files (4 files per speaker).

» Total size is approximately 600Mb.

https://catalog.ldc.upenn.edu/LDC93S1

o
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APPENDIX: DATA — RCV1-V2

» RCV1: A New Benchmark Collection for Text
Categorization Research

» A detailed description of this text categorisation data set

can be found in: http://www.imlr.org/papers/volume5/
lewisO4a/lewis04a.pdf

http://www.ai.mit.edu/projects/imlr/papers/volume5/lewis04a/lyrl2004_rcviv2_README.htm

o
A. Bevan Q‘a’ Queen |V|al’y

University of London


http://www.jmlr.org/papers/volume5/lewis04a/lewis04a.pdf
http://www.jmlr.org/papers/volume5/lewis04a/lewis04a.pdf
http://www.jmlr.org/papers/volume5/lewis04a/lewis04a.pdf
http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm

INTRODUCTION TO MACHINE LEARNING

APPENDIX: DEEP LEARNING USING LOW LEVEL FEATURES

I I I

» Baldi et al. have reported the ability for a deep network to learn additional
information from low level features over and above the high level features;
doing function approximation from energy and momenta.

» 2.6 million (100k) training (validation) examples.

» 5 layer network with 300 hidden units in each layer.

» learning rate 0.05 and weight decay coef. of 10-5.

» Improves discovery significance over and above a NN.
» Good illustration, is not a realistic scenario as:

» No systematics included.

» Relies on very large training samples (unrealistic for many LHC
scenarios).

» FOM optimised is the AUC - we measure limits, cross sections and

parameters relating to decay properties or fundamental quantities of the
(SM) model.

» Anecdotally I've found smart learning (SL) and deep learning (DL)
perform equally well in many scenarios with realistic HEP Monte Carlo/
data control sample constraints. SL algs. are less resource hungry than
DL ones.

Baldi, Sadowski, Whiteson: DOI: 10.1038/ncomms5308.
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https://www.nature.com/articles/ncomms5308.pdf
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APPENDIX: CROSS VALIDATION

» In statistics cross validation is used to understand the mean and variance
of estimations of model predictions from data.

» The bias will be irreducible and mean that the predictions made will
have some systematic effect related to the average output value.

» The variance will depend on the size of the training sample.
» The central limit theorem tells us that:

If one takes N random samples of a

distribution of data that describes N
some variable x, where each M = Z 27
sample is independent and has a i=1

mean value p; and variance o2, N
then the sum of the samples will V = E a2
. 1
have a mean value M and variance 1
V where:
Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320-328. A Bevan \GQ_‘:'! Queen |V|al’y

For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010). University of London
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APPENDIX: CROSS VALIDATION

» Application of this concept to machine learning can be
seen via k-fold cross validation and its variants*

» Divide the data sample for training and
validation into k equal sub-samples.

validation

» From these one can prepare k sets of validation
. . . - validation
samples and residual training samples.

Each set uses all examples; but the training and R iiador
validation sub-sets are distinct. T validation [
» One can then train the data on each of the k Il vaiication

training sets, validating the performance of the
network on the corresponding validation set.

— R ————— P—— p——————

— — ==

' *Variants include the extremes of leave 1 out CV and Hold out CV as well as leave p-out CV. These involve reserving 1 example, 50% of
a‘ examples and p examples for testing, and the remainder of data for training, respectively.

“‘ = —— — .

Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320-328. YaY,
For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010). A.Bevan C'Q’ g‘ggﬁﬂnmary
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APPENDIX: CROSS VALIDATION

» Application of this concept to machine learning can be
seen via k-fold cross validation and its variants*

. . ROC-Curve
» The ensemble of response function outputs will
vary in analogy with the spread of a Gaussian ¢ F SV Bost
distribution § F S oo
) § o_gf— = SVM_Holdout_RBF
I
» This results in family of ROC curves; with a go7t-
representative performance that is neither the @ 0.6
best or worst ROC. % 0eb
) :
= F
» The example shown is for a Support Vector 5 04
Machine, but the principle is the same. 2 03[
Q —
. — 5 02
» Itis counter-intuitive, but the robust response - ¢ | | | | |
0.4 0.5 0.6 0.7 0.8 0.9 1
comes from the average, not the best (True positive rate) Signal f

performance using the ROC FOM.

' *Variants include the extremes of leave 1 out CV and Hold out CV as well as leave p-out CV. These involve reserving 1 example, 50% of )

' examples and p examples for testing, and the remainder of data for training, respectively.

(I — — e ——

Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320-328.
For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010).
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