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Traffic Intensity Model

Google Maps images with traffic layer/colouring: green, orange, red, dark red
% of coloured pixels in annular sectors -> traffic intensity; physical density “field”  

Dimension reduction
from HD image 1920x1080:

(4 colours)x(16 angles)x(118 rings)
Or aggregating the angles:
(4 colours)x(118 rings)

Only 23 rings in this plot
118 rings shown in the next page



Width of 118 
concentric 
rings: 10m
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Traffic Intensity Model
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Regression Modeling: data matrices

Spatio-Temporal Data Matrices 𝑋 (traffic predictors; centered as 𝑋0 with 0 mean & 
rescaled with Var=1) and 𝑌 (pollutants responses; centered & rescaled as 𝑌0):

where 𝑝 = (4 colors)×(118 rings) (or (4 colors)×(16 angles)×(118 rings)) traffic 
predictor variables, 𝑚 = 9 pollutant response variables; 

𝑛 observations, depending on station/sensor (each has different # of missing/null 
readings)
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Regression Modeling: PLSR

Purpose of our modeling is two-fold: 

(1) (interpretations) get traffic activities 
mapping

pollutant 
concentrations, and reveal insight on their detailed relations, and 

(2) (predictions) predict pollutant concentrations based on traffic 
activities.

Most black-box machine learning techniques are good at (2) only;

Partial least squares (PLS) regression formulation:

ቐ
𝑋0 = 𝑋𝑆𝑋𝐿

T + 𝑋residuals

𝑌0 = 𝑌𝑆𝑌𝐿
T + 𝑌residuals



Spatio-Temporal Data
• Example of spatio-temporal data: sequence of images, videos, etc.

• Often centered to have 0-mean and rescaled to have unit variance

• Problem: both 𝑛 and 𝑝 are very large, variables may be correlated; 

• Fitting a naïve model using all 𝑝 variables ⇒ overfitting, and too “black-box”

• How to effectively reduce 𝑝 without losing too much information, and even 
extract or reveal some useful insight or interpretation?



Preliminary: Singular Value Decomposition (SVD)
• Singular value decomposition: 𝑋T = 𝑈Σ𝑉∗

• For real matrices, 𝑈∗ = 𝑈T, 𝑉∗ = 𝑉T, and 

• 𝑈 & 𝑉 are both orthogonal matrices:

• 𝑝 (spatial; variables) > 𝑛 (temporal; observations), reduced

SVD:

• Can reduce further:

• Diagonal line of Σ: non-increasing,

truncate the diagonal Σ to 1st 𝑟 values,

and the columns of 𝑈 and 𝑉

• Columns of 𝑈 are still

orthonormal basis; same for 𝑉



Principal Component Analysis (PCA)
• Recall the spatio-temporal data matrix:

• Variables (columns) are often correlated

• Covariance matrix of variables ∝ 𝑋T𝑋

• Using SVD: 𝑋T𝑋 = 𝑈Σ𝑉T𝑉ΣT𝑈T = 𝑈Σ2𝑈T

• Σ2 ∝ eigenvalues of covariance matrix of variables (columns in 𝑋)

• Columns in 𝑈 are the corresponding eigenvectors, called Principal Components

• 𝑋T = 𝑈Σ𝑉T, so 𝑈T𝑋T = Σ𝑉T, i.e., projecting each observation/data point to 
columns of 𝑈, and get Σ𝑉T of 𝑟 × 𝑛 (truncated to 𝑟 components)

• Rows of Σ𝑉T = 𝑋𝑆
T called “scores”, 

capturing major variances up to 𝑟 elements of Σ2

• 𝑋𝑆 : , 𝑖 2 = Σ2(𝑖, 𝑖)



Principal Component Analysis (PCA)
• Geometric interpretation:

𝑖-th obs.

𝑋𝑆 (𝑖, 1)

𝑋(: , 2)

𝑋 : , 1

ℝ𝑛

span(𝑋) ⊆ ℝ𝑛

𝑋𝑆(: 1)

1st observation

2nd

obs.

3rd observation

𝑋𝑆(: 2)

𝑋𝑆 : , 𝑖 2 = Σ2(𝑖, 𝑖)
Non-increasing along diagonal of Σ
Truncate up to 𝑋𝑆 : , 𝑟 to reduce dimension

1st variable

2nd variable

𝑛 obs./data points in total



Partial Lease Squares (PLS)
• PCA only considers 1 spatio-temporal data matrix

• In regression analysis, we have both predictor variables (predictors, independent 
variables; x) and response variables (responses, dependent variables; y), organized in 
𝑋 (centered as 𝑋0 with 0 mean & rescaled with Var=1) and 𝑌 (centered & rescaled as 
𝑌0):

Partial least squares (PLS) regression formulation:

ቐ
𝑋0 = 𝑋𝑆𝑋𝐿

T + 𝑋residuals

𝑌0 = 𝑌𝑆𝑌𝐿
T + 𝑌residuals



Regression Modeling: PLSR

ቐ
𝑋0 = 𝑋𝑆𝑋𝐿

T + 𝑋residuals

𝑌0 = 𝑌𝑆𝑌𝐿
T + 𝑌residuals
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Partial Lease Squares (PLS)
• Partial least squares (PLS) regression formulation:

ቐ
𝑋0 = 𝑋𝑆𝑋𝐿

T + 𝑋residuals

𝑌0 = 𝑌𝑆𝑌𝐿
T + 𝑌residuals

• It aims to find correlation between 𝑋0 and 𝑌0
• Recall SVD and covariance matrix (𝑝-by-𝑚): 𝑋0

T𝑌0 = 𝑈Σ𝑉T

• Again, columns of 𝑈 and 𝑉 are orthonormal basis: 𝑈T𝑋0
T𝑌0𝑉 = 𝑋𝑆

T𝑌𝑆 = Σ

• Projection of 𝑋0 on columns of 𝑈 obtains predictor scores 𝑋𝑆;
• Projection of 𝑌0 on columns of 𝑉 obtains response scores 𝑌𝑆;

• 𝑋𝑆
T𝑌𝑆 is inner products between columns of 𝑋𝑆 and 𝑌𝑆

• If 𝑋0 and 𝑌0 are centered and rescaled/normalized, projected on to 𝑈 and 𝑉 to get 𝑋𝑆
and 𝑌𝑆, so 𝑋𝑆

T𝑌𝑆 = Σ contains cosines between columns of 𝑋𝑆 and 𝑌𝑆.

• Σ is diagonal, non-increasing order: cosine (and hence correlation) between 𝑋𝑆 : , 1
and 𝑌𝑆(: , 1) is maximal; angle is minimal



Geometric Interpretation: principal angles between flats 
(subspaces)

ℝ𝑚

ℝ𝑝

ℝ𝑝 ⊕ℝ𝑚
1st PCA direction 
of predictors

1st PCA direction 
of responses

𝑈 : , 1

𝑉 : , 1

𝜃1, 𝜃2, …

𝑌0(: , 2)
(e.g., NO2)

𝑌0 : , 1 (e.g., PM2.5)

ℝ𝑛

span(𝑌0) ⊆ ℝ𝑚

span(𝑋0) ⊆ ℝ𝑝

𝑋0(: , 1)
(e.g., % of red 
pixels in 1st

annular sector)

𝑋0(: , 2)

𝑋𝑆(: , 1)

𝑌𝑆(: 1)

1st observation

2nd

obs.

3rd observation

𝑛 obs./data 
points in total
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Interpretations and Insight from PLS Regression Modeling

1st PLS component has physically meaningful interpretation:
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Interpretations and Insight from PLS Regression Modeling
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Interpretations and Insight from PLS Regression Modeling
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Interpretations and Insight from PLS Regression Modeling



Partial Lease Squares (PLS) regression and PCA regression
• When # of response variables in 𝑌 is small, we can use PCA to reduce the spatial 

dimension of 𝑋, and then fit a least squares model (Principal component regression, 
PCR)

• When responses 𝑌 is multi-dimensional/high dimensional, PLS regression often 
performs better.

• In actual model fitting, a (𝑝 predictors)-by-(𝑚 responses) coefficients matrix 𝛽𝑛comp
is fitted in least squares sense for

𝑌𝑆𝑌𝐿
T = 𝑋𝑆𝑋𝐿

T𝛽𝑛comp

using truncated 𝑛comp PLS components, and 𝑋𝑆𝑋𝐿
T and 𝑌𝑆𝑌𝐿

T are “reconstruction” of 
𝑋0 and 𝑌0
• Spatial dimension in 𝑋0 reduced from 𝑝 to 𝑛comp, effectively fitting 𝑌𝑆 = 𝑋𝑆𝛽 (a 

“partial” least-square), as compared to naïvely fit 𝑌 = 𝑋𝛽
• 𝑛comp can be fixed by cross-validation to minimize the expected mean-squared 

errors (MSE) 𝑌0 − 𝑌𝑆𝑌𝐿
T 2

.

• (a preliminary result on next page)



PLSR Modeling and Prediction Performance
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(all 9 pollutant response variables are centered to 0 mean with rescaled Var=1)



Outlook and Conclusions

(conclusions by Marcella)

SAPIENS has built a database with both pollution measurements and traffic 
images, so we have:

• Cleaned and analysed the data and identified patterns 
• Developed a model to extract the traffic intensities from Google Map 

images
• Used the regression modeling to (1) obtain interpretable insights on the 

relation between traffic and pollutants; and (2) train it on the data from 
three stations (traffic and pollution data) and cross-validated it to avoid 
overfitting

On-going activities:

• Validation/testing phase: use other sensors data to validate/test model
• Paper in preparation  



Outlook and Conclusions

There are more ideas and more possibilities to exploit and learn from 
these data.

More ideas on how to exploit the predicting power of the modeling

E.g., incorporating meteorological data, going beyond linear modeling
techniques, etc.

Stay tuned for more from us


