Traffic Intensity Model
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Google Maps images with traffic layer/colouring: green, orange, red, dark red
% of coloured pixels in annular sectors -> traffic intensity; physical density “field”

Dimension reduction
from HD image 1920x1080:

(4 colours)x(16 angles)x(118 rings)
Or aggregating the angles:
(4 colours)x(118 rings)

Only 23 rings in this plot
118 rings shown in the next page

Air quality monitoring

station location ™~
\
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For each sector, Traffic Intensity
| = # of Traffic-colored Pixels
= i # of Total Pixels

Example of Traffic-colored

< \ ~ox . |Pixels counting with weights:

\ | Green=1,Orange=2, Red=3,
<\ Brown=4

S5 \(other conventions are possible)|
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Regression Modeling: data matrices
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Spatio-Temporal Data Matrices X (traffic predictors; centered as X, with 0 mean &
rescaled with Var=1) and Y (pollutants responses; centered & rescaled as Yj):

predictor variables (spatial) e variables (spatial)
1st predictor p-th predictor co NO?2
1st obs. [ _— Xo(lﬁi) — i B Y()(l)
observations (temporal) E Xo(:, 1) e X(Cen.tere(i as XO) .. XO(:gp) YO(:’ 1) e Y(Centered as YO) T )/0(:, m = 9)
n-th obs. | _— XO (TL; :) — i L Yo(n, :)

where p = (4 colors)x(118 rinFs) (or (4 colors)Xx (16 angles)x(118 rings)) traffic
predictor variables, m = 9 pollutant response variables;

n observations, depending on station/sensor (each has different # of missing/null
readings)



Regression Modeling: PLSR
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Purpose of our modeling is two-fold:

: : : . ... mapping
(1) (interpretations) get traffic activities > pollutant

concentrations, and reveal insight on their detailed relations, and

(2) (predictions) predict pollutant concentrations based on traffic
activities.

Most black-box machine learning techniques are good at (2) only;
Partial least squares (PLS) regression formulation:

;
_ T

Xo = Xs X + Xresiduals
_ T

\ Yo = YsY, + Yiasiduals
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Spatio-Temporal Data

* Example of spatio-temporal data: sequence of images, videos, etc.
e Often centered to have 0-mean and rescaled to have unit variance

variables (spatial)

1st variable p-th variable

—_— Xo(]., 1) S

1st obs.

observations (temporal) XO(:J 1) .. X (Centel‘ed as XO) e XO(jp)

n-th obs. | — Xo (’TL, I) EE—

* Problem: both n and p are very large, variables may be correlated;
* Fitting a naive model using all p variables = overfitting, and too “black-box”

* How to effectively reduce p without losing too much information, and even
extract or reveal some useful insight or interpretation?



Preliminary: Singular Value Decomposition (SVD)

e Singular value decomposition: X1 = UTV*

e For real matrices, U* = UT, V* =VT and - U 5 V

* U & VV are both orthogonal matrices: pxn  pxp pxn nxn
1
* p (spatial; variables) > n (temporal; observations), reduced ik
1
SVD: u U =1,
» Can reduce further: X" U S V i
1
o Ni . . _. . pXxn pXxp pXn  nxn "
Diagonal line of X: non-increasing, \ Vv V' = |,

truncate the diagonal 2 to 15t r values, N
and the columns of U and V X' U, zZ, V
e Columns of U are still

orthonormal basis; same for V XX U 3V

pXn pXr rxr rxn



Principal Component Analysis (PCA)

* Recall the spatio-temporal data matrix:
* Variables (columns) are often correlated

oooooooooooooooooooooo

e Covariance matrix of variables o« XTX
e Using SVD: XTX = UuzVTyvsTuT = yz?u?

1st

obs. i

n-th obs.

1st variable p-th variable

2 « eigenvalues of covariance matrix of variables (columns in X)

* Columns in U are the corresponding eigenvectors, called Principal Components

e XT =UZVT, soUTXT = XVT, i.e., projecting each observation/data point to
columns of U, and get 2V ! of r X n (truncated to r components)

* Rows of ZVT = XJ called “scores”,

capturing major variances up to r elements of X2

X G DI% =22(, )

X' U, z \VA

pXn pXr rxn




Principal Component Analysis (PCA)

* Geometric interpretation:

122”‘1' variable

span(X) € R"

._n..o.b.é./dé_ta pé).oints.inéto.tal N —

3rd pbservation

15t variable

- = -
- -
- -
- -
- B~

1Xs(:, DII? = Z2(i, 1)
Non-increasing along diagonal of X
Truncate up to Xs(:,7) to reduce dimension

1st observation




Partial Lease Squares (PLS)

* PCA only considers 1 spatio-temporal data matrix

* |n regression analysis, we have both predictor variables (predictors, independent
variables; x) and response variables (responses, dependent variables; y), organized in
X (centered as Xy with 0 mean & rescaled with Var=1) and Y (centered & rescaled as

Yo):

predictor variables (spatial)

i 1st predictor p-th predictor i 1st response m—th response
1st obs. _ XO(L:) - - Yﬂ(lyi)
servations (temporal) E XO(:, 1) — X(CeIltel'ed as XO) .. XO(:..p) Yb(:; 1) e Y (Centel‘ed as YO) .« YE}(:? m)
n-th obs. [ e XU(TL, :) S B YE}(R, :) _

Partial least squares (PLS) regrefssion formulation:
_ T
Xo = XsXi + Xyesiduals
_ T
\YO =YV, + Yyesiduals




Regression Modeling: PLSR

S
o
|

T

XsXp + Xresiduals
_ T

Yo = YsY, + Yresiduals

PLS components/modes number

observations (temporal)

predictor variables (spatial)

1st obs.

n-th obs.

1st predictor

X (centered as Xj)

predictor variables (spatial)

Xo(1,)

XO(.n, )

p-th predictor

~

1st PLS comp.

Neomp-th PLS comp.

XS(:u rncomp)

1st PLS comp.

Neomp-th comp.

1st predictor

XE(:, 1)

response variables (spatial)

X7 (X loading)

XE(I, )

X;[,[‘(ncompa :)

1st obs. — Xs(l,I) —
observations (temporal) XS(. 1) . XS (X qcoreq)
i SC =
n-th obs. E— Xg(n, Z) —
sspo bles (spatial)
cO NO2
1st abs. —_— K](l._ ) _
observations (temporal) Y“(:‘ 1) . Y (centered as Y(J) Y(](fg }U)
n-th obs. _— Y[]('ﬂ, Z) _—
PLS components/modes number
1st PLS comp. Neomp-th PLS comp.
st obs. | _— YS(]., :) _—
observations (temporal) YS(M 1) Yy (Y scores) YS(:, ncomp)
n-th obs. e Ytg(ﬂ,, Z) —_—

1st PLS comp.

Neomp-th comp.

co

Yi(Ls)

V(51 - Y (Y loading)

YLT (ncomps :)

NO2

Vi (:

p-th predictor

X7 (5 p)
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Partial Lease Squares (PLS)

 Partial least squares (PLS) regfression formulation:

_ T
) Xo = XsX; *+ Xresiduals

_ T
\Yo = YsY, + Yyesiduals

* It aims to find correlation between X, and Y}
* Recall SVD and covariance matrix (p-by-m): X(]_YO =yzy!

* Again, columns of U and V' are orthonormal basis: UTX(-)FYOV = X;-YS =X
* Projection of X; on columns of U obtains predictor scores X;

* Projection of Y, on columns of V obtains response scores Ys;

. XSTYS is inner products between columns of X5 and Ys

* If Xo and Y, are centered and rescaled/normalized, projected on to U and V to get X
and Ys, so X¢ Ys = X contains cosines between columns of Xg and Ys.

* X is diagonal, non-increasing order: cosine (and hence correlation) between Xs(:, 1)
and Ys(:, 1) is maximal; angle is minimal



Geometric Interpretation: principal angles between flats
(subspaces)

V(:,1)

A

Rm

span(Yy) € R™

15 PCA direction

Uc,1)
of responses =

¥o(:,1) (e.g., PMyz5) span(X,) € R?

n obs./data
pointsintotal '\

3rd gbhservation Xs(:,1)
15t PCA direction

R? @ R™ ~\X\ | Tz

of predictors T TN | S

) .“;l)\
2., % ofred -
pixels in 15t
annular sector)

1st observation




Interpretations and Insight from PLS Regression Modeling

1st PLS component has physically meaningful interpretation:

Station: CAM, Monday To Friday
PLS Component 1's Weights of Colored Pixels

Percentages in 118 Concentric Rings
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Interpretations anc
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Interpretations and Insig
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Partial Lease Squares (PLS) regression and PCA regression

* When # of res/eonse variables in Y is small, we can use PCA to reduce the spatial
dlm)en5|on of X, and then fit a least squares model (Principal component regression,
PCR

* When resBonses Y is multi-dimensional/high dimensional, PLS regression often
performs better.

* In actual model fitting, a (p predictors)-by-(m responses) coefficients matrix 8,
is fitted in least squares sense for

Vs¥y' = XsX/ Brcoms
BJ(sing érlu/ncated Ncomp PLS components, and XSXLI- and YSYLT are “reconstruction” of
0 and Iy

* Spatial dimension in X, reduced from p to n.,mp, effectively fitting Yo = X0 (a
“partial” least-square), as compared to naTvern% Y =X0

* Neomp Can be fixed by cross-validation to minimize the expected mean-squared
errors (MSE) (YO — YSYLT) .
 (a preliminary result on next page)

p

Iptl



PLSR Modeling and Prediction Performance

SMART AIR POLLUTION INFORMATION ENABLING NEW SOLUTIONS
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(all 9 pollutant response variables are centered to 0 mean with rescaled Var=1)

Station: 3 Stations Combined, Monday to Friday

n = 472 PLS components required to explain 47.0% of variance in Y

size(X) = [2090,472], min(size(X,1)-1, size(X,2)) = 472;

472

172 2 100.0%

Eslt(%%lated Mean Squared Prediction Errors in Y using 10-fold Cross—Validzla(ijion

Percent Variance FExplained in Y
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X 10
Y 7.0852

Bl U of Variance Explained m Y by Each PLS Component
—e— Cumulative Sum of % of Variance Explained in Y with Increasing n
—-=-— Estimated Mean-Squared Prediction Errors in Y using the 1st n PLS Components
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size(X) = [2090, 472], min(size(X,1)-1, size(X,2)) = 472;

Station: 3 Stations Combined, Monday to Friday

n = 472 PLS components required to explain 47.0% of variance in Y
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Outlook and Conclusions
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(conclusions by Marcella)

SAPIENS has built a database with both pollution measurements and traffic
images, so we have:

« Cleaned and analysed the data and identified patterns

« Developed a model to extract the traffic intensities from Google Map
Images

« Used the regression modeling to (1) obtain interpretable insights on the
relation between traffic and pollutants; and (2) train it on the data from

three stations (traffic and pollution data) and cross-validated it to avoid
overfitting

On-going activities:

- Validation/testing phase: use other sensors data to validate/test model
« Paperin preparation



Outlook and Conclusions

There are more ideas and more possibilities to exploit and learn from
these data.

More ideas on how to exploit the predicting power of the modeling

E.g., incorporating meteorological data, going beyond linear modeling
techniques, etc.

Stay tuned for mM

SMART AIR POLLUTION INFORMATION ENABLING NEW SOLUTIONS




