

IRIS Operational Intelligence:

Increasing data access to aid federation cohesiveness IRIS Digital Asset 2021/2022

Connor Pettitt
connor.pettitt@stfc.ac.uk
SCD RAL
15th February 2022

Operational Intelligence

New services

Operational Intelligence

```
curl -i api.opii.iris.ac.uk/help
Please follow this link to login:
https://iris-iam.stfc.ac.uk/login?s=ae8593f112
Login successful.
Session key: x0ivqb8gdf3kriz8l0bc7ytiknd826ug
   %curl -i api.opii.iris.ac.uk/help
         -h 'auth:x0ivqb8gdf3kr
                                 [31]: conn graph = nx.from dict of dicts(small)
  "response": {
                                       labels = {e: conn graph.edges[e]['weight'] for e
    "/cloud": "Cloud",
    "/cvmfs": "CVMFS",
    "/gocdb": "GOCDB",
                                       print('A small sample of all throughput tests')
    "/help": "Return this infor
                                       pos = nx.bipartite layout(conn graph, destinatic
    "/perfsonar": "PerfSONAR"
                                         = nx.draw(conn graph, pos, with labels=True)
                                         = nx.draw networkx edge labels(conn graph,
   'time": 1643211777
                                       A small sample of all throughput tests
                                        v-01-poz_pl v4.geant.net
                                        -bw-sof-bg.geant.org
```

-bw-gen ch.geant.org

bw-lon2=uk.geant.org

N-01 lis pt v4.geant.net

psbrix.rrze ni-erlar

paris1 snd 022 perfsona

Data Hub with REST API

```
0 %curl -i api.opii.iris.ac.uk/help
Please follow this link to login:
https://iris-iam.stfc.ac.uk/login?s=ae8593f112
Login successful.
Session key: x0ivqb8gdf3kriz8l0bc7ytiknd826ug
 0 %curl -i api.opii.iris.ac.uk/help
         -h 'auth:x0ivqb8gdf3kriz8l0bc7ytiknd826ug'
  "response": {
    "/cloud": "Cloud",
    "/cvmfs": "CVMFS",
    "/gocdb": "GOCDB",
    "/help": "Return this information.",
    "/perfsonar": "PerfSONAR"
  "time": 1643211777
```

Create your own application using data API.

Automate the feedback cycle.

```
api.opii.iris.ac.uk/cvmfs/qet_cpu/
ISON Raw Data Headers
Save Copy Collapse All Expand All (slow) 

▼ Filter |SON
response:
 ▼0:
                         "cpu-total"
    cpu:
                         "cvmfs-release01.gridpp.rl.ac.uk"
    host:
                         "2022-01-24T17:00:00Z"
    time:
    usage guest:
    usage guest nice:
    usage idle:
                        99.95676745578997
    usage iowait:
                        0.0018230590931583492
    usage irq:
    usage nice:
    usage softirg:
                         0.0005208740266166579
    usage steal:
    usage system:
                         0.03359637471677421
    usage user:
                         0.007292236372634137
 → 1:
```

Visualisation Hub with Kibana

See friendly user focused visualisations.

Analysis Hub with JupyterHub

Analysis Hub with JupyterHub

Create your own complex visualisations.

Example visualisation of a perfSONAR network graph with connection information in a notebook.


```
[6]: # Get n files data
      data perfsonar = n.get perfsonar()
      [Parallel(n jobs=8)]: Using backend ThreadingBackend with 8 concurrent
      workers.
      [Parallel(n jobs=8)]: Done 34 tasks
                                                     elapsed:
                                                                  3.5s
      [Parallel(n jobs=8)]: Done 184 tasks
                                                     elapsed:
                                                                 15.3s
      [Parallel(n jobs=8)]: Done 420 out of 420 | elapsed:
                                                                 34.6s finished
[31]: conn graph = nx.from dict of dicts(small)
[32]: labels = {e: conn graph.edges[e]['weight'] for e in conn graph.edges}
[33]: print('A small sample of all throughput tests')
      pos = nx.bipartite layout(conn graph, destinations)
        = nx.draw(conn graph, pos, with labels=True)
        = nx.draw networkx edge labels(conn graph, pos, edge labels=labels)
      A small sample of all throughput tests
      /-01-poz_pl v4.geant.net
      -bw-sof-bg.geant.org
      -bw-gen-ch.geant.org
                                         psbrix rrze eni-erlan
                              0.0
      bw-lon2=uk.geant.org
      w-01-lis-pt-v4.geant.net
```

Portal

Science and Technology Facilities Council

Context

- 6 month **exploratory** project ending in toy implementation.
- Looking for **feedback**.
- Ideas for future use cases?
- Perspectives: Service vs Activity vs User

Manager:

 See the current realtime effectiveness of a service by a new metric, e.g., "Estimated GHG emission vs utilisation."

Manager:

 See the current realtime effectiveness of a service by a new metric, e.g., "Estimated GHG emission vs utilisation."

Activity:

 Automated feedback on real usage vs expected usage.

Manager:

 See the current realtime effectiveness of a service by a new metric, e.g., "Estimated GHG emission vs utilisation."

Activity:

 Automated feedback on real usage vs expected usage.

User:

 Estimate the efficiency of a particular task on a given service, or "core utilisation and memory."

Manager:

 See the current realtime effectiveness of a service by a new metric, e.g., "Estimated GHG emission vs utilisation."

Activity:

 Automated feedback on real usage vs expected usage.

User:

 Estimate the efficiency of a particular task on a given service, or "core utilisation and memory."

Provider:

- Use statistical analysis and machine learning to categorise usage patterns.
- Near-term future projected usage.

Manager:

 See the current realtime effectiveness of a service by a new metric, e.g., "Estimated GHG emission vs utilisation."

Activity:

 Automated feedback on real usage vs expected usage.

User:

 Estimate the efficiency of a particular task on a given service, or "core utilisation and memory."

Provider:

- Use statistical analysis and machine learning to categorise usage patterns.
- Near-term future projected usage.

All:

- Improve the feedback cycle between use and improvement.
- Draft and communicate the latest performance analyses.
- Quickly demonstrate service bugs and bottlenecks.

Questions:

- How could IRIS appear more **coherent** to user/manager/activity?
- How could the current "state" of IRIS be made more visible?
- Who might benefit and how?

Questions:

- How could IRIS appear more **coherent** to user/manager/activity?
- How could the current "state" of IRIS be made more visible?
- Who might benefit and how?

Questions:

- How could IRIS appear more coherent to user/manager/activity?
- How could the current "state" of IRIS be made more visible?
- Who might benefit and how?

- Services can process data to find relationships.
- Activities can automate the usage-allocation feedback cycle.
- Project managers can see the state and scale of operations.
- Sites can display information as a point of interest.
- **Users** can **demonstrate** during meetings/presentations.

Challenges

Challenges

Data, Analytics & Visualisation:

- Relevance
- Testing & development
- Interpretability
- Sense of scale

Tools:

- Interface
- Isolating IRIS metrics

Collaboration:

- Specifying data
- Transport between sites
- Accessibility vs Security

Data, Analytics & Visualisation

Data, Analytics & Visualisations

Data:

Relevant machine metrics

Examples:

- Service load (cpu, mem, disk, ...)
- Active jobs across domains
- Activities being served
- Transfer progress

Data, Analytics & Visualisations

Data:

Relevant machine metrics

Examples:

- Service load (cpu, mem, disk, ...)
- Active jobs across domains
- Activities being served
- Transfer progress

Analytics:

- Quantify service "goodness"
- Allow comparisons

Examples:

- Service "availability"
- Network "weather" (perfSONAR)
- Change in load
- Projected load vs capacity
- Energy used
- Efficiency
- Carbon emitted
- Basements flooded

Data, Analytics & Visualisations

Data:

Relevant machine metrics

Examples:

- Service load (cpu, mem, disk, ...)
- Active jobs across domains
- · Activities being served
- Transfer progress

Analytics:

- Quantify service "goodness"
- Allow comparisons

Examples:

- Service "availability"
- Network "weather" (perfSONAR)
- Change in load
- Projected load vs capacity
- Energy used
- Efficiency
- Carbon emitted
- Basements flooded

Visualisations:

- Easy to interpret
- "Sense" of the service

Example:

A basic "front view" of the Cloud

Tools

Tools:

Tools:

Glasgow:

- node_exporter -> Prometheus -> Grafana
- PromTail -> Loki -> Grafana

CERN:

• Collectd -> Fluentd -> **ElasticSearch** -> Grafana

SCD RAL:

- Telegraf -> InfluxDB -> Grafana
- Filebeat -> Logstash -> ElasticSearch -> Kibana
- ? -> Ganglia -> Icinga
- APEL
- GOCDB

Tools:

Glasgow:

- node_exporter -> Prometheus -> Grafana
- PromTail -> Loki -> Grafana

CERN:

• Collectd -> Fluentd -> ElasticSearch -> Grafana

SCD RAL:

- Telegraf -> InfluxDB -> Grafana
- Filebeat -> Logstash -> ElasticSearch -> Kibana
- ? -> Ganglia -> Icinga
- APEL
- GOCDB

Databases:

- InfluxDB
- APEL
- GOCDB
- Elasticsearch
- Prometheus
- Loki
- Ganglia

Data transport:

Participation:

Data transport:

HTTPS

• Data Hub can pull from databases using limited read accounts.

<u>AMS</u>

• Python-opii (later) can push to the AMS @opii queue.

Participation:

Data transport:

HTTPS

 Data Hub can pull from databases using limited read accounts.

<u>AMS</u>

Python-opii (later) can push to the AMS @opii queue.

Participation:

- Services collect own metrics.
- Flexible publishing (e.g. push or pull.)
- Standard data/methods document format.
- Focus on security and access control mechanisms.

Data transport:

HTTPS

 Data Hub can pull from databases using limited read accounts.

<u>AMS</u>

• Python-opii (later) can push to the AMS @opii queue.

Participation:

- Services collect own metrics.
- Flexible publishing (e.g. push or pull.)
- Standard data/methods document format.
- Focus on security and access control mechanisms.

		Α	В
	1	Service	SuperService
	2		
	3	Data	cpu
	4	Description	Telegraf [cpu] output
	5	Delivery	Pull
	6	Database	InfluxDB
	7	Endpoint	influxdb.ss.ac.uk
	8	Credentials	
	9	Query	SELECT * FROM cpu where time > Now() - 1w;
ľ	10		
	11	Data	transfers
	12	Description	ARK CE transfer jobs
Ī	13	Delivery	Push
Ī	14	AMS Queue	@opii
	15	Format	json
	16	ID	ss-transfers

The current model

- Python package
- Architecture
- Interactions
- Implementation

Opll Python Package

(Operational Intelligence for IRIS)

User functions:

- Pull from service databases / Data Hub REST API
- Run analyses
- Send to the Data Hub

User functions:

- Pull from service databases / Data Hub REST API
- Run analyses
- Send to the Data Hub

User functions:

- Pull from service databases / Data Hub REST API
- Run analyses
- Send to the Data Hub

e.g. InfluxDB, GOCDB, APEL, Prometheus, Loki, ...

Science and
Technology
Facilities Council

e.g. Access metrics/usage in Cloud, CVMFS, SCD Compute, ...

Example workflows

Example workflows

Technology Facilities Council

Science and Technology Facilities Council

Example workflows

Servers ("Hubs") specialising in serving, processing, or visualising IRIS information.

- **Data Hub** periodically pulls from service databases, runs a REST API, and processes/stores data.
- Analysis Hub provides a user space for creating analysis workflows and dashboard mockups.
- Visualisation Hub provides a shared space to create stable views on this information.
- A central portal which improves findability and provides updates.

Architecture model

Architecture model

(Internal toy implementation as of 2022/02/15)

Infrastructure:

SCD RAL

Implementation at SCD RAL

(Internal toy implementation on 2022/02/15)

SCD RAL

(Internal toy implementation as of 2022/02/15)

SCD RAL

IRIS Services

APEL
Cloud STFC
GOCDB

Compute at RAL

Certificate Authority

Compute at DiRAC

Compute at GridPP

CVMFS

Disk/Tape/CephFS Storage

DIRAC

FAST-HEP

High Memory Nodes

IRIS-IAM

Scientific Openstack

RUCIO/FTS

VCycle

(Leicester)

(Imperial)

(Bristol)

(Manchester)

(Stackhpc)

(CERN)

Thank You

perfSONAR

perfSONAR

Sites can participate by creating perfSONAR "nodes" and providing network test data (from their location) to WLCG/OSG MaDDash via the Esmond API.

Tools: Interfacing

- ALTCE TO OWAMP Latency - Loss" "uri" ' /madda

(with perfSONAR, shown later)

Distribution

APEL scale:

- APEL scale
 - 131 sites serving 100 VOs with 1168 DNs
 - 4M records/day [Kibana]
 - [?] Messages/day
 - ~ 250byte / record ~ 1GB/day via AMS

Metrics scale:

- Metric size: 100*FLOAT32 ~ 3kB
- Machines: 8k/site ~ 1M machines
- Collection precision: "realtime" ~ 1sec 1min
- Update rate: "realtime" ~ 1min 60mins

Min\max update rate:

24\1440 messages / day

► If we want to match the scale of APEL (~1GB/day)

all machines: ~ 0.3 datapoints / machine / day

(or 2400 datapoints / site / day)

aggregate by grid, cloud, storage:

~0 - 3k datapoints / site / day

If we want "realtime":

all: 12M - 700M dp/l site / day, (36GB - 2.1TB/site)

aggregate: 1.5k - 88k dp / site / day, (5MB - 265MB/site)

(AMS is used for realtime metrics already)

