Scientific OpenStack FY21

OpenStack Blazar and Azimuth Cloud Portal's On-Demand Platforms

February 2022

StackHPC Company Overview

- Formed 2016, based in Bristol, UK
 - Based in Bristol with presence in Cambridge, France and Poland
 - Currently around 20 people
- Founded on HPC expertise
 - Software Defined Networking
 - Systems Integration
 - OpenStack Development and Operations
- Motivation to transfer this expertise into Cloud to address HPC & HPDA (AI)
- "Open" Modus Operandi
 - Upstream development of OpenStack capability
 - Consultancy/Support to end-user organizations in managing HPC service transition
 - Scientific-WG engagement for the Open Infrastructure Foundation
- Hybrid Cloud Enablement

Scientific OpenStack IRIS Assets FY21

Scientific OpenStack

Integration can be a Challenge!

Previous IRIS Assets

- IRIS Production is largely based on FY19 assets (and Arcus a bit)
- IRIS Stage largely based on FY20 assets
 - Blazar Preemptible Instances, and easier to use Reservations
 - Multiple configurations in a single kayobe config branch
 - CI/CD Improvements, Monitoring Improvements (alerts and dashboards)
 - Ansible based server bootstrapping from UM6P
 - Scripts to deploy hypervisors on Ironic overcloud instead of the seed
 - Creation of Slurm appliance, supporting Updated platforms and Magnum templates
- Some parts of FY21 assets are ready for testing

IRIS Assets for FY2021

IRIS-FY21A

- OpenStack Configuration and Deployment (Wallaby on CentOS Stream 8, cephadm, OVN)
- Better Resource Sharing (Monitor utilization, Improve Blazar operability and utilization)
- Accelerated Infrastructure Management (RDMA and GPUs within K8s on VMs, NVMe in K8s)
- Cloud Portal & K8s (OIDC, Portal CI, Slurm appliance autoscale, Magnum K8s, Grafana)

IRIS-FY21B

- WP1: Cloud Portal Enhancements (40%)
 - K8s Applications, Storage Import/Export, Secure Application Proxy, AI/ML Benchmarks
- WP2: Lustre and NVMe powered Ceph file system and Ceph object store via Jupyter (20%)
- WP3: Port Scientific OpenStack to Rocky Linux 8 / RHEL 8 (30%)
- WP4: Centralised open access Scientific OpenStack repository and CI/CD platform (10%)

OpenStack Blazar

Before creating a Science Platform...

... you need access to infrastructure and a resource allocation

- Pick access method
 - o GridPP, Slurm, laaS (e.g. OpenStack)
- Understand what resources to request
- Request IRIS allocation
- IRIS IAM group membership
- Onboarded by allocated Infrastructure provider
 - Submit your job, or create your VM
 - o ... "no valid host"!?

OpenStack Blazar

OpenStack Blazar

Using Blazar

- Allocation mapped to "cloud credit hours", not Quota
- User creates a Reservation
 - Pick when and how much resources, depending on availability
 - Cloud credits are consumed when you create the reservation
 - You can't create a reservation without sufficient cloud credits
- Typically reserve a number of hosts
 - Scheduling implemented similarly to tenant isolation filters
 - o ... does not require additional scheduler hints
- GPU reservation, ideally reserve 1/8th of an A100
 - Need more granular reservation than a full host
 - o ... but, must create resources using a reservation specific private flavor
- Preemptible instances can use unreserved space
 - with minimum lifetime

Reservations and Preemptibles

Reservations and Preemptibles

Planned Blazar testing at Cambridge

- Slurm with Preemptible VM partition
 - Large reservation for shared Slurm (or non-blazar managed servers)
 - Some usage of preemptibles, as backfill for unused Blazar resource
 - ... in a way this creates space for possible reservations
 - Minimum lifetime of preemptible == max job time
- Cloud Portal Resources via OpenStack
 - Resource allocation maps to cloud credits (e.g. CPU hours)
 - When your reservation starts, use OpenStack as normal
 - Reservations ending trigger deleting all VMs in the reservation
 - o ... option of preemptibles if you have no credit

Tracking Reservation Efficiency

Tracking VM Efficiency

- Already collected in Prometheus via libvirt exporter
 - Example workload: stress-ng (with 75% allocation)
- WIP: Summary per project via CloudKitty
- WIP: OpenStack Grafana and Azimuth integration

Azimuth Cloud Portal

Scientific OpenStack

Azimuth Cloud Portal

- Self-service portal for managing cloud resources
 - Focus on ease of use for Scientists
 - While being optimized for HPC and AI use cases
- Make it easier to find and reuse common lego bricks
 - Could be a consistent interface across all IRIS OpenStack clouds
 - Links to: IRIS Docs, IRIS accounting portal, IRIS status pages, etc.
- Reduce time to science
- Reduce operational effort of onboarding new communities

Builds on the STFC funded work done by JASMIN

Key Azimuth Changes in FY21

JupyterHub on Kubernetes

- Built on Kubernetes Cluster API (not OpenStack Magnum, not Kubespray)
- Batteries included: Monitoring, KubeApps, Dashboard, Ingress, Cinder CSI, and more
- KubeApps pre-populated with helm charts (e.g. DB as a Service)
- Simplify use of RDMA and GPUs, when available
- NVMe optionally exposed as RWX PVCs (using Rook.io)
- WIP: Tooling for Lustre shared between JupyterHub and CSD3

Zenith Proxy

- Streamline user experience
- More efficient use of external IPs (only for the routers)
- o (optionally) share authn/z with Azimuth

Slurm

AWX uses terraform to create Rocky Linux based OpenHPC cluster, with Open OnDemand

Azimuth Cloud Portal Architecture

StackHPC

https://github.com/stackhpc/azimuth

Azimuth with AWX and Zenith

Zenith Proxy

Future Ideas

- Current focus on short lived platforms
- More work to support creating platforms for your group
 - o ... rather than only matching existing OpenStack project
- Lots of ideas from interviewing IRIS communities
- Includes:
 - More single machine apps: VirtualGL, Jupyter repo2docker, Matlab, R-Studio...
 - Automatically registering independent IRIS IAM client, via helm
 - Automatically using RDMA network for Slurm clusters
 - Storage for Slurm surviving the cluster
 - In place updates for Slurm
 - Slurm autoscale via the portal
 - 0 ...

Cloud Portal: Get me a Slurm Cluster

Slurm integrated Grafana

WIP: Open OnDemand via Zenith

WIP: Open OnDemand via Zenith

WIP: Open OnDemand via Zenith

Live Demo of Azimuth

Live Demo of Azimuth

- Bigger Laptop
- Kubernetes
 - Zenith proxy to Grafana and KubeApps
 - JupyterHub SSO
- Customizing JupyterHub, and its Storage

Cloud Portal: Get me a bigger laptop, via IRIS IAM

Azimuth Cloud Portal Architecture

StackHPC

https://github.com/stackhpc/azimuth

How did you get access to that VM?

- There is nothing hiding the OpenStack API here, similar to Exposhere
- IRIS IAM login to OpenStack Keystone
 - Get keystone token to access the API
 - No credentials ever go through the Cloud Portal
- Create OpenStack server via API
 - Cloud-init configures guacamole
 - And starts an ssh session to a proxy
- Azimuth Proxy
 - HA possible via use of Nginx, consul, consul-template, ssh
 - https://github.com/stackhpc/azimuth

Zenith Proxy

StackHPC

Service to be exposed

Cloud Portal: Get me a K8s Cluster, via IRIS IAM

How did you do create the K8s cluster?

- Kubernetes Cluster API
 - Machines provided by Cluster API Provider OpenStack
- Operator and helm charts on top of Cluster API
 - Install addons, including Monitoring and Networking Drivers
- Future funded work: Azimuth Proxy support:
 - o Grafana, Kubernetes Dashboard, and kubeapps are the first targets

Cloud Portal: Get me a JupyterHub, with Azimuth SSO

Cloud Portal: Customize my JupyterHub

Questions?