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The neutrino

Existence first postulated by
Pauli in 1930 to explain shape
of β decay spectrum

Directly detected by Cowan &
Reines in 1956

Three flavours discovered: νe,
νµ, ντ . All appeared to be
massless
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Neutrino oscillations
Evidence from atmospheric, solar,
reactor and accelerator neutrinos all
confirms the existence of neutrino
oscillations

2015 Nobel Prize awarded to Takaaki
Kajita & Arthur B. Macdonald “for the
discovery of neutrino oscillations,
which shows that neutrinos have
mass”

Oscillations arise from mixing between
flavour and mass eigenstates of
neutrinos

Neutrino mass scale very different
from other fermions
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Neutrino oscillations and neutrino mixing
Mixing between flavour and mass eigenstates given by

|νi〉 =
∑

i

Uαi |να〉

where

U =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


is a unitary matrix

Oscillations controlled by the matrix U and the squared differences
between the mass eigenstates, ∆m2

ij = m2
i −m2

j

These ∆m2
ij control the length/energy scale at which oscillations

occur
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Neutrino mass hierarchy

Differences between m2
i known

from oscillations

Ordering of mass eigenstates
currently unknown

Lightest mass eigenstate is
either m1 (normal hierarchy) or
m3 (inverted hierarchy)
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Possible neutrino masses
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It is possible the lightest mass eigenstate (either m1 or m3) may in
fact be massless

Masses of the other eigenstates are then constrained by the mass
splittings
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Why measure the neutrino mass?

Evidence for physics beyond the Standard Model

Very different mass scale suggests different mass generation
mechanism (compared to just Higgs)
Connected to various new physics searches:

Lepton number violation
Sterile neutrino
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Measuring the neutrino mass

Cosmological
measurements

Neutrinoless double
β-decay Direct measurement

of β-decay
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What do we actually measure?

Cosmological
measurements

Σ =
∑

i

mi

Neutrinoless double
β-decay

mββ =
∑

i

(Uei)
2 mi

Direct measurement
of β-decay

mβ =

√∑
i

|Uei |2 m2
i
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Current limits

Cosmological
measurements

Σ < 0.111 eVc−2
arXiv:2007.08991 [astro-ph.CO]

Neutrinoless double
β-decay

|mββ | <
0.036− 0.156 eVc−2

arXiv:2203.02139 [hep-ex] (2022)

Direct measurement
of β-decay

mβ < 0.8 eVc−2

Nat. Phys. 18, 160-166 (2022)
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The first two have their issues

Relies on cosmological models
Only works if neutrinos are

Majorana particles
Neither of these are model independent measurements in the same
way that direct measurement is
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Measurements of β-decay

A
Z X →A

Z+1 X ′ + e− + ν̄e

For β-decay the total energy of the initial state is well known and the
kinematics of the final state can be precisely measured

Can use energy and momentum conservation to constrain the
neutrino mass

Processes such as this often referred to as ‘direct measurement’

Isotope commonly used is tritium
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Direct measurement

An old idea – Fermi suggested the shape of the β-ray spectrum
could be used to determine the neutrino mass in 1934, as did Perrin
separately in 1933
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Tritium β-decay spectrum
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Limits on mβ
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Mass splittings from oscillation experiments provide a lower limit on
mβ

For normal hierarchy mβ & 9 meV
For inverted hierarchy mβ & 50 meV

An experiment with a sensitivity below mβ = 50 meV will determine
the mass hierarchy (if still unknown)
A sensitivity of 9 meV gives us a guaranteed discovery
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What can measuring mβ tell us?

Results can add to those from 0νββ experiments – determine
Majorana phases

Red here is IH, blue is NH, width of the band is all possible values
of Majorana phases

Horizontal band is 95% upper bound on mββ from GERDA
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What can measuring mβ tell us?

Similarly, results can be used to augment existing limits from
cosmology

Red here is IH, blue is NH

Horizontal band: 95% CL upper bound on Σ from cosmology
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MAC-E filter – Current state of the art

Magnetic Adiabatic Collimation – Electrostatic
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MAC-E filter – Current state of the art

Magnetic Adiabatic Collimation – Electrostatic

Electrons emitted in source region with high magnetic field, BS, and
travel adiabatically along field lines to analysing region with much
lower field, Bmin
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MAC-E filter – Current state of the art

Magnetic Adiabatic Collimation – Electrostatic

Retarding potential at central analysing plane prevents electrons
without sufficient energy from passing
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MAC-E filter – Current state of the art

Magnetic Adiabatic Collimation – Electrostatic

Those electrons with sufficient energy to pass the potential barrier
are re-accelerated and detected
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MAC-E filter – Current state of the art

Repeat this for different retarding potentials in order to generate
spectrum
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KATRIN experiment

Current best limits on mβ are produced by the KATRIN experiment,
shown here
70 m long beamline
Spectrometer is 9.8 m in diameter and 23.3 m in length held at
pressure of 10−11 mbar
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KATRIN experiment

Most recent combined results give upper limit of mβ < 0.8 eVc−2

This is expected to be extended down to 0.2 eVc−2 with the
addition of further data
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Limitations of MAC-E filters

To increase statistical power, can increase source size

However, source thickness is limited by σns ≤ 1 where σ is electron
inelastic cross-section and ns is the number density

For a MAC-E filter:

∆E
E

=
Bana

Bsrc

=

(
Rsrc

Rana

)2

Therefore, increasing Rsrc requires a corresponding increase in the
spectrometer size
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Limitations of MAC-E filters
Impractical to scale KATRIN up – spectrometer is already ∼ 10 m in
diameter

We require a different technique for mβ < 0.2 eVc−2
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Are calorimetric techniques the solution?

Can embed isotopes in
microcalorimeter – these decay via
electron capture

Calorimeter measures the atomic
de-excitation energy (minus the
neutrino’s energy)
163Ho used by ECHo and HOLMES
collabs.
In order to get required energy resolution for a high enough activity
may require thousands or 100s of thousands of microcalorimeters
operated at mK level
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CRES overview

Coherent Radiation Emission
Spectroscopy

Concept pioneered by Project 8
collaboration - Phys. Rev. D 80,
051301(R)

f =
1

2π
eB

me + Ekin/c2

Determine energy of β-decay electron by measuring the frequency
of the emitted EM radiation due to motion in magnetic field
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CRES overview

f =
1

2π
eB

me + Ekin/c2

Ekin = Qβ = 18.6 keV, B = 1 T

f = 27 GHz, λ ∼ 1 cm, MW radiation
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CRES advantages

No losses while transporting e− from the source to the detector (c.f.
MAC-E filters)

Frequency measurements can reach precision of ∆f/f ∼ 10−6

The source (tritium gas) is transparent to MW radiation

Differential spectrum measurements
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CRES challenges

Radiated powers are very small

Total radiated power (fW) ≈ 2.026× 10−2 f 2
B(GHz) β2

For an 18.6 keV electron (β ≈ 0.26) this is about 1 fW
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CRES challenges
Radiated powers are very small
Atomic tritium source required

Molecular tritium has rotational
and vibrational excitations that
broaden the endpoint peak

Key challenge for any future
experiment
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CRES challenges

Radiated powers are very small

Atomic tritium source required

Need to trap and observe ∼ 1020 tritium atoms

Last eV of the spectrum
contains 2.9× 10−13 of the
events

Necessitates an intense source
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Project 8

Above: CRES signal from
30 keV 83mKr decay electrons

Project 8 Phase I

Phase II with molecular
tritium in a 1 T field

Detected 3742 events
over 82 days
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QTNM collaboration

Quantum Technologies for Neutrino Mass Collaboration

Proposal goal: build a demonstrator apparatus for determining
neutrino mass via CRES from tritium β-decay – CRESDA
This entails:

Show proof of atomic trapping ∼ 1020 deuterium atoms
Mapping magnetic field with . 0.1 ppm precision
Using quantum limited electronics
Experiment should be ‘tritium ready’ – to be built at UCL

Unique advantages from quantum electronics knowledge and large
trap/beamline which should allow scalability for increased mβ

sensitivity
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QTNM collaboration

Quantum Technologies for Neutrino Mass Collaboration

Ultimate goal

Move CRESDA to Culham for
demonstrations with tritium (2025)

Eventual international consolidation
with Project 8, etc. to build an
experiment with ∼ 10 meV sensitivity
(2029)
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CRESDA outline

Consists of source, atomic trapping beam line and instrumented
CRES region
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Atomic source and trapping
Atomic source produces deuterium atoms at a speed of
∼ 650 m s−1

Atoms can be cooled with Zeeman deceleration or Rydberg-Stark
deceleration

Zeeman decelerator Rydberg-Stark decelerator
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CRES Magnet Assembly (CMA)
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CRES region trapping

∆f ∼ 1
tobs

Therefore must be able to observe electrons for 10s or 100s of µs
Require trapping field of order 1 mT against 1 T background
Several designs currently being explored
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Magnetic field mapping

Measuring electron energy with
resolution of 10−6 requires that B-field
be known to similar level

Circular Rydberg states can used to
measure the magnetic field

Deuterium or tritium atoms can be
used as quantum sensors for B-field
mapping down to precision of 0.1 ppm

Potential spatial resolution of 0.1 mm
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Quantum-limited microwave amplifiers

To detect small CRES signal, require quantum-limited amplifiers
Various options currently being explored:

Resonant Kinetic Inductance Parametric Amplifiers
Travelling Wave Kinetic Inductance Parametric Amplifiers
Superconducting Low-Inductance Undulatory Galvanometer (SLUG)
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Simulation

Work ongoing to optimise
trap and antenna designs

Can simulate an (idealised)
decay electron signal in a
variety of traps using
custom software

Right shows our simulated
‘chirping’ electron signal
(without noise) after
down-mixing and sampling
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Reconstruction and analysis

CRES signal contains a lot of
information about electron
dynamics

‘Sideband spacing’ contains
information about e− angle
w.r.t. B-field

Key parameter to determine
different B-field experienced by
each e− and therefore
reconstruct energy
Looking at matched filters, ML techniques to identify signals and
reconstruct correctly
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Summary

The neutrino mass scale remains unknown but the answer has the
potential to provide key constraints in several areas

Current measurement techniques (MAC-E filters) are at their limits
and cannot take us to an experiment with guaranteed discovery
potential

CRES is a recent technique that allows the measurement of
electron energy at unprecedented precision

The QTNM collaboration is building on unique quantum techniques
to demonstrate the viability of a CRES experiment

Provides the exciting possibility of having the ultimate neutrino
mass experiment in the UK
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