

The QTNM collaboration: a new project for neutrino mass measurement

Seb Jones (on behalf of the QTNM collaboration)

Department of Physics & Astronomy University College London

April 13, 2022

The neutrino

- Existence first postulated by Pauli in 1930 to explain shape of β decay spectrum
- Directly detected by Cowan & Reines in 1956
- Three flavours discovered: ν_e, ν_μ, ν_τ. All appeared to be massless

Neutrino oscillations

- Evidence from atmospheric, solar, reactor and accelerator neutrinos all confirms the existence of neutrino oscillations
- 2015 Nobel Prize awarded to Takaaki Kajita & Arthur B. Macdonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass"
- Oscillations arise from mixing between flavour and mass eigenstates of neutrinos
- Neutrino mass scale very different from other fermions

S. Jones (UCL)

Neutrino oscillations and neutrino mixing

Mixing between flavour and mass eigenstates given by

$$\left|\nu_{i}\right\rangle = \sum_{i} U_{\alpha i} \left|\nu_{\alpha}\right\rangle$$

where

$$U = egin{pmatrix} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{ au 1} & U_{ au 2} & U_{ au 3} \ U_{ au 1} & U_{ au 2} & U_{ au 3} \end{pmatrix}$$

is a unitary matrix

- Oscillations controlled by the matrix *U* and the squared differences between the mass eigenstates, $\Delta m_{ii}^2 = m_i^2 m_i^2$
- These △m²_{ij} control the length/energy scale at which oscillations occur

Neutrino mass hierarchy

- Differences between m²_i known from oscillations
- Ordering of mass eigenstates currently unknown
- Lightest mass eigenstate is either m₁ (normal hierarchy) or m₃ (inverted hierarchy)

Possible neutrino masses

- It is possible the lightest mass eigenstate (either m₁ or m₃) may in fact be massless
- Masses of the other eigenstates are then constrained by the mass splittings

Why measure the neutrino mass?

- Evidence for physics beyond the Standard Model
- Very different mass scale suggests different mass generation mechanism (compared to just Higgs)
- Connected to various new physics searches:
 - Lepton number violation
 - Sterile neutrino

Measuring the neutrino mass Neutrinoless double Cosmological β-decay Direct measurements

Direct measurement of β -decay

UCL

What do we actually measure?

Cosmological measurements

Neutrinoless double

Direct measurement of β -decay

$$\Sigma = \sum_i m_i$$

$$m_{etaeta} = \sum_i \left(U_{ei}
ight)^2 m_i$$

$$m_{\beta} = \sqrt{\sum_{i} |U_{ei}|^2 m_i^2}$$

Current limits

Cosmological measurements

 $\Sigma < 0.111 \text{ eV}c^{-2}$ arXiv:2007.08991 [astro-ph.CO]

Neutrinoless double

Direct measurement of β -decay

 $m_eta < 0.8 \ {
m eV}c^{-2}$ Nat. Phys. 18, 160-166 (2022)

 $|m_{etaeta}| < 0.036 - 0.156 \, {
m eV} c^{-2}$ arXiv:2203.02139 [hep-ex] (2022)

The first two have their issues

Relies on cosmological models

 $n \longrightarrow \nu$ $W \longrightarrow \nu$ $n \longrightarrow W \longrightarrow e^{-}$

Only works if neutrinos are Majorana particles

Neither of these are model independent measurements in the same way that direct measurement is

Measurements of β -decay

$$A_Z^A X
ightarrow^A_{Z+1} X' + e^- + ar{
u}_e$$

- For β-decay the total energy of the initial state is well known and the kinematics of the final state can be precisely measured
- Can use energy and momentum conservation to constrain the neutrino mass
- Processes such as this often referred to as 'direct measurement'
- Isotope commonly used is tritium

Direct measurement

An old idea – Fermi suggested the shape of the β-ray spectrum could be used to determine the neutrino mass in 1934, as did Perrin separately in 1933

Tritium β -decay spectrum

$$\frac{d\Gamma}{dE}\approx 3r_0\left(E_0-E\right)\left[\left(E_0-E\right)^2-m_\beta^2\right]^{1/2}\Theta\left(E_0-E-m_\beta\right)$$

Limits on m_{β}

- Mass splittings from oscillation experiments provide a lower limit on m_β
 - For normal hierarchy $m_{\beta} \gtrsim 9 \,\mathrm{meV}$
 - For inverted hierarchy $m_{eta}\gtrsim 50\,{
 m meV}$
- An experiment with a sensitivity below m_β = 50 meV will determine the mass hierarchy (if still unknown)
- A sensitivity of 9 meV gives us a guaranteed discovery

What can measuring m_{β} tell us?

- Results can add to those from 0νββ experiments determine Majorana phases
- Red here is IH, blue is NH, width of the band is all possible values of Majorana phases
- Horizontal band is 95% upper bound on $m_{\beta\beta}$ from GERDA

What can measuring m_{β} tell us?

- Similarly, results can be used to augment existing limits from cosmology
- Red here is IH, blue is NH
- Horizontal band: 95% CL upper bound on Σ from cosmology

Magnetic Adiabatic Collimation – Electrostatic

- Magnetic Adiabatic Collimation Electrostatic
- Electrons emitted in source region with high magnetic field, B_S, and travel adiabatically along field lines to analysing region with much lower field, B_{min}

- Magnetic Adiabatic Collimation Electrostatic
- Retarding potential at central analysing plane prevents electrons without sufficient energy from passing

- Magnetic Adiabatic Collimation Electrostatic
- Those electrons with sufficient energy to pass the potential barrier are re-accelerated and detected

 Repeat this for different retarding potentials in order to generate spectrum

KATRIN experiment

- Current best limits on m_β are produced by the KATRIN experiment, shown here
- 70 m long beamline
- Spectrometer is 9.8 m in diameter and 23.3 m in length held at pressure of 10⁻¹¹ mbar

S. Jones (UCL)

KATRIN experiment

- Most recent combined results give upper limit of $m_\beta < 0.8 \text{ eV}c^{-2}$
- This is expected to be extended down to 0.2 eVc⁻² with the addition of further data

Limitations of MAC-E filters

- To increase statistical power, can increase source size
- However, source thickness is limited by *σn_s* ≤ 1 where *σ* is electron inelastic cross-section and *n_s* is the number density
- For a MAC-E filter:

$$egin{aligned} &\Delta E \ \overline{E} &= rac{B_{ extsf{ana}}}{B_{ extsf{src}}} \ &= \left(rac{R_{ extsf{src}}}{R_{ extsf{ana}}}
ight)^2 \end{aligned}$$

Therefore, increasing R_{src} requires a corresponding increase in the spectrometer size

Limitations of MAC-E filters

Impractical to scale KATRIN up – spectrometer is already ~ 10 m in diameter

• We require a different technique for $m_{eta} < 0.2 \ {
m eV} c^{-2}$

S. Jones (UCL)

Are calorimetric techniques the solution?

- Can embed isotopes in microcalorimeter – these decay via electron capture
- Calorimeter measures the atomic de-excitation energy (minus the neutrino's energy)
- ¹⁶³Ho used by ECHo and HOLMES collabs.

CRES overview

- Coherent Radiation Emission
 Spectroscopy
- Concept pioneered by Project 8 collaboration - *Phys. Rev. D* 80, 051301(R)

$$f=rac{1}{2\pi}rac{eB}{m_e+E_{
m kin}/c^2}$$

Determine energy of β-decay electron by measuring the frequency of the emitted EM radiation due to motion in magnetic field

CRES overview

$$f = \frac{1}{2\pi} \frac{eB}{m_e + E_{\rm kin}/c^2}$$

•
$$E_{\text{kin}} = Q_{\beta} = 18.6 \text{ keV}, B = 1 \text{ T}$$

• $f = 27 \text{ GHz}, \lambda \sim 1 \text{ cm}, \text{MW radiation}$

CRES advantages

- No losses while transporting e⁻ from the source to the detector (c.f. MAC-E filters)
- Frequency measurements can reach precision of $\Delta f/f \sim 10^{-6}$
- The source (tritium gas) is transparent to MW radiation
- Differential spectrum measurements

CRES challenges

Radiated powers are very small

Total radiated power (fW) \approx 2.026 \times 10⁻² f_B^2 (GHz) β^2

For an 18.6 keV electron ($\beta \approx$ 0.26) this is about 1 fW

CRES challenges

- Radiated powers are very small
- Atomic tritium source required

- Molecular tritium has rotational and vibrational excitations that broaden the endpoint peak
- Key challenge for any future experiment

CRES challenges

- Radiated powers are very small
- Atomic tritium source required
- Need to trap and observe $\sim 10^{20}$ tritium atoms

- Last eV of the spectrum contains 2.9 × 10⁻¹³ of the events
- Necessitates an intense source

Project 8

- Above: CRES signal from 30 keV ^{83m}Kr decay electrons
- Project 8 Phase I

- Phase II with molecular tritium in a 1 T field
- Detected 3742 events over 82 days

QTNM collaboration

Quantum Technologies for Neutrino Mass Collaboration

- Proposal goal: build a demonstrator apparatus for determining neutrino mass via CRES from tritium β-decay – CRESDA
- This entails:
 - \blacksquare Show proof of atomic trapping $~\sim 10^{20}$ deuterium atoms
 - Mapping magnetic field with \lesssim 0.1 ppm precision
 - Using quantum limited electronics
 - Experiment should be 'tritium ready' to be built at UCL
- Unique advantages from quantum electronics knowledge and large trap/beamline which should allow scalability for increased m_β sensitivity

Swansea

University

Prifysgol

Abertawe

QTNM collaboration

Quantum Technologies for Neutrino Mass Collaboration

MBRIDGE

Ultimate goal

- Move CRESDA to Culham for demonstrations with tritium (2025)
- Eventual international consolidation with Project 8, etc. to build an experiment with $\sim 10 \, \text{meV}$ sensitivity (2029)

UCL

CRESDA outline

 Consists of source, atomic trapping beam line and instrumented CRES region

Atomic source and trapping

- Atomic source produces deuterium atoms at a speed of $\sim 650\,m\,s^{-1}$
- Atoms can be cooled with Zeeman deceleration or Rydberg-Stark deceleration

UCL

CRES Magnet Assembly (CMA)

CRES region trapping

- \blacksquare Therefore must be able to observe electrons for 10s or 100s of μs
- Require trapping field of order 1 mT against 1 T background
- Several designs currently being explored

Magnetic field mapping

- Measuring electron energy with resolution of 10⁻⁶ requires that *B*-field be known to similar level
- Circular Rydberg states can used to measure the magnetic field
- Deuterium or tritium atoms can be used as quantum sensors for *B*-field mapping down to precision of 0.1 ppm
- Potential spatial resolution of 0.1 mm

Quantum-limited microwave amplifiers

- To detect small CRES signal, require quantum-limited amplifiers
- Various options currently being explored:
 - Resonant Kinetic Inductance Parametric Amplifiers
 - Travelling Wave Kinetic Inductance Parametric Amplifiers
 - Superconducting Low-Inductance Undulatory Galvanometer (SLUG)

Simulation

- Work ongoing to optimise trap and antenna designs
- Can simulate an (idealised) decay electron signal in a variety of traps using custom software
- Right shows our simulated 'chirping' electron signal (without noise) after down-mixing and sampling

Reconstruction and analysis

- CRES signal contains a lot of information about electron dynamics
- 'Sideband spacing' contains information about e⁻ angle w.r.t. B-field
- Key parameter to determine different *B*-field experienced by each e⁻ and therefore reconstruct energy

Looking at matched filters, ML techniques to identify signals and reconstruct correctly

Summary

- The neutrino mass scale remains unknown but the answer has the potential to provide key constraints in several areas
- Current measurement techniques (MAC-E filters) are at their limits and cannot take us to an experiment with guaranteed discovery potential
- CRES is a recent technique that allows the measurement of electron energy at unprecedented precision
- The QTNM collaboration is building on unique quantum techniques to demonstrate the viability of a CRES experiment
- Provides the exciting possibility of having the ultimate neutrino mass experiment in the UK