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Overview

 DUNE’s Physics Goals

* ProtoDUNE
» Measuring electron-ion recombination at ProtoDUNE
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DEEP UNDERGROUND
NEUTRINO EXPERIMENT

/
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Sanford Underground

Research Facility

Fermilab
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* Next-generation international neutrino & underground science experiment
hosted in the United States (37 countries + CERN)

* High intensity neutrino beam, near detector complex at Fermilab
* Large, deep underground LArTPC far detectors at SURF

 Precision neutrino oscillation measurements, MeV-scale neutrino physics,
broad program of physics searches beyond the Standard Model
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Neutrino oscillation: motivation

We know neutrinos oscillate... but what

is the origin of neutrino mixing? Is there
an underlying flavor symmetry?
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Neutrino oscillation: motivation

We know neutrinos oscillate... but what
is the origin of neutrino mixing? Is there
an underlying flavor symmetry?

We know neutrinos have mass... but
what is the origin of neutrino mass? Why
are the neutrinos so light?
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Neutrino oscillation: motivation

* We know neutrinos oscillate... but what
is the origin of neutrino mixing? Is there
an underlying flavor symmetry?

* We know neutrinos have mass... but
what is the origin of neutrino mass? Why
are the neutrinos so light?

* We know there is a baryon asymmetry...
but is leptogenesis a viable explanation? ‘.
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Neutrino oscillation: motivation
We know there is a baryon asymmetry...

but is leptogenesis a viable explanation? U

Uy U Ues Uen
We know there are at least three neutrino e ([5‘:1 o ul 5’:2)
states... but are there exactly three? Is 0 g W B o Dl
the vSM complete? Is the PMINS matrix  Phys. Rev. D 93, 113009 (2016)
unitary?

We know neutrinos oscillate... but what
is the origin of neutrino mixing? Is there
an underlying flavor symmetry?

We know neutrinos have mass... but
what is the origin of neutrino mass? Why
are the neutrinos so light?
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What we know in December 2022
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DUNE measures oscillations over
more than a full period
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* Measuring oscillations as
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Neutrino oscillation is part of a

broad physics program
* DUNE FD has excellent BSM sensitivity: |

* Large mass
e Deep underground
* High resolution
* Low thresholds

* Boosted BSM searches — high intensity
beam and capable ND
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Astroparticle events in DUNE:
several decades in energy & rate
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LBNF: lots and lots of neutrinos

* 1.2 MW proton beam, upgradeable to 2.4 MW

* Peak at 1st maximum (2.5 GeV), with substantial flux
between first and second maximum (0.8 GeV)
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Deep underground far detector site
at SURF (Lead, South Dakota)
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Far Detector — Site of Original

Davis Experiment!
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Image: Brookhaven
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Why LAr: exquisite imaging for
flavor ID, energy reconstruction

" DUNE FD1-HD DUNE FD1-HD ,
-simulated 3.0 GeV v, simulated 2.5 GeV v, -

* Clean separation of v, and v, charged currents

* Low thresholds for charged particles — precise
reconstruction of lepton and hadronic energy — E,

reconstruction over broad energy range
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Why LAr: Nobel Elements

 Transparent to their own scintillation light
 No electron attachment®, long drift distances

17 7" December Abbey Waldron




Why LAr: Transparent

Self-trapped exciton luminescence

=

Recombination luminescence

Image: Ben Jones

 Scintillation from decay of eximers

* Reverse process to absorb light requires two atoms in close proximity
* Argon unbound in ground state, atoms typically around 4 A apart
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Events per 0.25 GeV

What DUNE actually measures:
Events vs. reco energy
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Events per 0.25 GeV

What DUNE actually measures:
Events vs. reco energy
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The DUNE ND provides critical
nstraints on systematics

CcO

1EIE

LT T

 Large uncertainties on flux, cross sections,
and detector response require are constrained
to the few percent level by the ND

* ND-LAr+TMS: measure neutrino
interactions on the same Ar target, with same
detector technology as FD

e Some differences in design to mitigate beam
pile-up

 Steel+scintillator spectrometer to measure
forward muons

» System moves up to 30m off axis (next slide)

* On-axis detector (SAND) measures neutrino
interactions on various targets and monitors
beam stability
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@ [em 2 per POT per GeV]

Pred. Event Rate per 1 GeV

PRISM plays a critical role in
enabling DUNE'’s precision
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Current measurements of
v, - Vv, (T2K and NOVA)

 Narrow-band neutrino flux at the oscillation maximum

e Number of observed v, and \_/ events is related to the
oscillation parameters, but effects are degenerate, and data

are not precise enough to resolve everything
T2K Runl-10 Preliminary NOvVA Preliminary
QV‘S 24 _I T ] | P B | I i Gl i I L S ) I E T L»z8 I | S P AL I UL ] UL l I_ 60 _ho'le 'FDI ! L] T | L T I T T T I T | I I—
— L Sl i ) o i
= - . ] [ 13.60- 102 POT-equiv (v) sin20,3=0.085
B b ..., = 5 - 12.50- 10%° POT (v) i
8 C [ “oay,. ] Q 5ol ol
B o ‘e, TN =1 o
:_SA: 20 '__ -.l.. "'.~:~_~... '__" ‘E
—- C g, ] =
» 18 ' . = 2 a0l -
2 H ] L
2 B . 2
5 B _ sin’0,, = 045,050,055,0.60 O 3¢, =0 ] §3°__ 4
= C —Amj, = 2.49x10" eV2 . o =-n2 ] o |
= 12— ....Ami =-2 46x107 e V2 68% syst err. at best-fit — < T
= C 0 b s v Best-fit 5 = :
< 10 = sm=+m2 ~- Data (68% stat crr.) 3 2005 85p=0 o dgp=n/2 % 2020 best f y
I I S SN U T T S SN ST T S [N T M SN S U WO T T AT SN S S A 1 n -o OCP= bCP_ 3n/2
50 60 70 80 % IOO l]O ]20 E e pepey 5) oo v Gy 5 B ov g b g i 2] 9 5
20 40 60 80 100 120
Neutrino mode e-like candidates Total events - neutrino beam

23 7" December Abbey Waldron




RHC v, candidates

DUNE'’s large matter effect makes
CPV and MO effects separable

[ DUNE result ® 5,=0
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* Key feature very long
baseline — no overlap
between NO and IO

e Data point shows long-term
reach of DUNE if we
ignored spectral
information and just
counted events

1000 1500 2000 2500 3000 3500 4000 © This is a really, really bad

way to show the reach of
DUNE...
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DUNE measures oscillations over
more than a full period
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* Broadband neutrino beam — measure oscillations vs. L/E
e Oscillation parameters affect the spectral shape as well as the rate

* We might see that our data fits nicely with a particular set of 3-
flavor parameters over many energy bins...and we might not
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Mass ordering: definitive resolution

DUNE Simulation

DUNE Simulation
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 Significant mass ordering sensitivity very quickly:
~97% correct after ~1-2 years

* Long term — >10c for any parameter combination
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CP violation: 6 resolution 6-16°

CP Violation Sensitivity
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DUNE has unique sensitivity to
supernova electron neutrinos

-~ Infall i Neutronization Accretion Cooling
® : .
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e Neutronization burst is V, 7, Vo
entirely v
Ve DUNE  89% 4% 7%
* Complementary with other SK! 10% 879% 30,

sensitive large detectors
JUNO? 1% 72% 27%

e SNB is driving the design of \Super-Kamiokande, Astropart, Phys. 813943 (2016)
. uper-Kamiokande, Astropart. Phys. -
the DAQ and trigger system 2, | and zhou. Phys Rev. D 94 023006 (2016)
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ProtoDUNE
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ProtoDUNE &

* Prototype for the first far detector module of DUNE

* Liquid argon TPC, active volume of 7.2 m x 6.1 m x 7.0 m and
photon detection system

* Incorporates full-sized components designed for the far detector

* First physics run, mixed particle test beam with momenta in
range 0.3 GeV/c to 7 GeV /c at CERN neutrino platform in 2018-
2019
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ProtoDUNE Physics Goals

* Improve pion and proton cross section measurements

« Enable development of liquid argon simulations before
DUNE main physics running

* Measure electron-ion recombination in liquid argon
crucial for neutrino energy reconstruction in DUNE
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Recombination Measurement

« Want to know energy deposited in our detectors to
measure neutrino oscillation parameters

« What we actually measure is the charge read out
from the electrons drifting to the anodes

* To do our physics we need to convert between the
two -> recombination modelling!

* One of the main systematics for neutrino oscillation
measurements at DUNE

32
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Recombination

Relationship between the observed charge, dQ/dx, and the
deposited energy, dE/dx, is non-linear due to electron-ion
recombination, dQ/dx saturates at higher values of dE/dx and
varies as a function of electric field

dQ/dx vs dE/dx (<¢> = 80°)

JINST 8 (2013) P08005 (ArgoNeuT)

» Investigate two different models of recombination using

stopping proton tracks: Birks” model and Modified Box
model
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Recombination Modeling: Onsager geminate theory

» Assumes electron recombines with parent ion

» Electron ion separation small compared to ion spacing
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Recombination Modeling: Jaffé columnar model

35

» Assumes separation of ions (W /(dE/dx)) is small
compared to electron ion distance

» Gaussian profile about track assumed

» Introduces angular dependence if electric field present
(perpendicular vs parallel to drift direction)
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Birks” Model

dQ _ 45
dx W1+%§_‘1§

Where Ap and kg are free parameters to be fit. Other
parameters from nature or detector:

» W = 23.6 eV/electron (average energy to ionise argon
atom)

» ¢ =0.553[0.4867] kV/cm (average drift electric field,
ProtoDUNE-SP in this analysis [MC])

> p=1.383 g/cm® (density of liquid argon at 124.106 kPa)
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Modified Box Model

dQ 1 dE
dX BW lOg (ﬂ& + OZ)

Where 8 = pef8’ and o and 8’ are free parameters to be fit.
Other parameters from nature or detector:

» W = 23.6 eV/electron (average energy to ionise argon
atom)

» ¢ =0.553[0.4867] kV/cm (average drift electric field,
ProtoDUNE-SP in this analysis [MC])

» p=1.383 g/cm?’ (density of liquid argon at 124.106 kPa)
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Notes about these models

These models are purely empirical and the “constants” are not
parameters of nature but rather contain secret detector physics:

» electric field
» track angle with respect to the drift direction
» impurities

» delta ray modeling

As such it is important to measure for each detector and check
reasonable compared to similar detectors, but bear the above in
mind.

38
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Uncertainty on dE/dx

Using the Modified Box model, we can solve for dE/dx:

dE 1 dQ
v E (exp (ﬂwa) — a)
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ProtoDUNE Results
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How we make this Measurement

» Compare calibrated charge deposits with expected energy
deposit deduced from residual range of the proton track
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Method: Selecting the Stopping Protons

Some basic cuts applied (the same as far as possible in data and
MC):

» Primary track contains hits

» Reconstructed track length consistent with stopping 1 GeV
proton

» Beamline instrumentation PID = proton
» Track start position and angle consistent with beam
» Additional cleaning cuts
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Method: Get dQ/dx and dE/dx

For all the hits along the primary track need to get dQ/dx,
dE/dx and residual range:

» Residual range (R): directly from track reconstruction
» dQ/dx: uniformity calibration applied

» dE/dx: most probable value calculated from track

reconstructed residual range via Landau-Vavilov
distribution !

lroot.cern.ch/doc/master/classRO0T 1 1Math 1 1VavilovAccurate.html
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Validation with MC
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Validation with MC

Modified Box Model:
» a=0.920 £ 0.015 (Input: 0.93)
> ('=0.212 £ 0.005 (Input: 0.212) (kV/cm)(g/cm?)/MeV
» y?/ndof = 1.07
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Uncertainties

dE/dx
- 0.5 cm from end point finding [we are working to reduce]

dQ/dx

- Statistical uncertainty from peak finding (varies by bin, small)

- Uniformity correction, drift direction (0.3% data, 0.3% MC)

- Uniformity correction, plane perpendicular to drift direction (1.5%
data, 1.0% MC)

- Additional space charge systematic uncertainty (calculated, not
included in these results)

- Additional systematic due to electric field non-uniformity
(calculated, not included in these results)
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Fit Results: Data
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Fit Results: Data
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350000

300000

250000 -

200000 -

150000

100000 -

50000

--‘ +

- Birks Best Fit
Modified Box Best Fit
Fitted dQ/dx

10.0

12,5 15.0 175 200

dE/dx [MeV/cm]

- 10}

10°

lol)

48 7" December Abbey Waldron




Global Results Summary

ArgoNeuT,

[CARUS uBooNE ProtoDUNE
Modified Box Model 0.93 4+ 0.02 0.92 4+ 0.02 0.905 + 0.014
Modified Mox Model 3’

0.212 4+ 0.002 0.184 + 0.002 0.194 + 0.005
(kV/cm)(g/cm?)/MeV
Birks” Model Ag 0.800 £+ 0.003 0.816 + 0.012 0.813 4+ 0.018
Birks’ Model B’ | -
(kV/cm)(g/cm2)/MeV 0.0486 + 0.0006 0.045 + 0.001 0.051 + 0.004

JINST 8 (2013) P08005, NIM A 523 (2004) 275-286, JINST 15 (2020) 03, P03022, this work
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Fit Results: Data

Modified Box Model:
» a=0.905+ 0.014 (ArgoNeuT: 0.93 + 0.02)

» 3 =0.194 4+ 0.005 (ArgoNeuT: 0.212 + 0.002)
(kV/cm)(g/cm?)/MeV

> x2/ndof = 1.04

Birks” Model:
» Ap =0.813 £+ 0.018 (ICARUS: 0.8 + 0.003)

» kg =0.051 + 0.004 (ICARUS: 0.0486 + 0.0006)
(kV/cm)(g/cm?)/MeV

> y2/ndof = 0.77
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Summary

DUNE will resolve the neutrino mass ordering, and
measure 8.p with CP-violation sensitivity over a broad
range of parameter space

DUNE will precisely measure 0,3, 0,; and Am?;,, and 3-
flavor oscillations to test the 3-flavor paradigm

DUNE has unique sensitivity to low-energy neutrinos
from a galactic supernova burst

ProtoDUNE provides a vital measurement for the energy
reconstruction via electron-ion recombination

A lot of exciting physics lies ahead!




