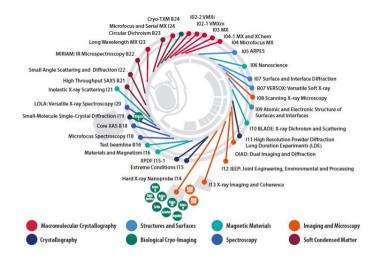
Kubernetes at Diamond Light Source

Thomas Hartland



About Diamond

24/04/2023

What's on Kubernetes

- General web services
 - · 82 "project namespaces"
 - Gitlab runners, Jupyterhub, k8s stack etc..
- Some data processing that doesn't require HPC cluster
- (Moving towards) beamline controls software

On prem infra

- ~2000 CPU cores (25 node) production cluster
 - 4x V100 GPUs
- Baremetal, 100Gb/s ethernet interconnects + IB
- NVMe storage exposed as Persistent Volumes
- Multi tenancy cluster
 - Self service "personal" namespaces
 - On request "project" namespaces for production deployments

Clusters

- Main class of cluster
 - Argus production
 - Pollux pre-preduction
 - Telamon testing
 - Castor testing (VMs)

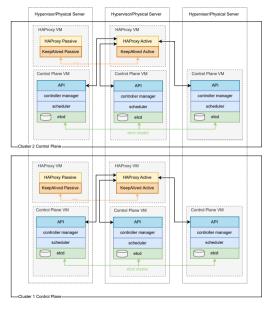
Clusters

- Main class of cluster
 - Argus production
 - Pollux pre-preduction
 - Telamon testing
 - Castor testing (VMs)
- Special workers
 - · Hylas workers in controls & primary network
 - p38 & i22 workers are located at beamlines

Clusters

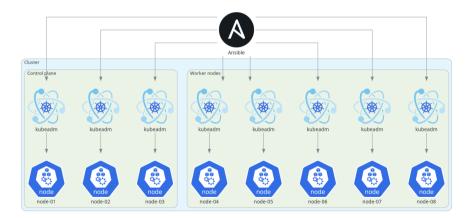
- Main class of cluster
 - Argus production
 - Pollux pre-preduction
 - Telamon testing
 - Castor testing (VMs)
- Special workers
 - · Hylas workers in controls & primary network
 - p38 & i22 workers are located at beamlines
- Off-prem STFC/IRIS openstack cloud
 - Orpheus ${\sim}100$ node cluster in STFC/IRIS openstack cloud
 - Cepheus testing cluster for Orpheus

Control plane


- Shared control plane for all on-prem clusters
- Three physical hypervisors running, per cluster:
 - 3 VM kubernetes master nodes
 - 2 VM HAproxy loadbalancers

Control plane

- Shared control plane for all on-prem clusters
- Three physical hypervisors running, per cluster:
 - 3 VM kubernetes master nodes
 - 2 VM HAproxy loadbalancers
- · We had a hypervisor memory DIMM failure
 - No users noticed, no API downtime



Deployment

- Full stack managed with Ansible
 - Managing hardware/VMs
 - Deploying kubernetes (kubeadm)
 - · Deploying application stack onto cluster
- Cloud team were the first Ansible users at Diamond

Kubernetes deployment

Stack deployment

- Ansible kubernetes/helm modules
- Monitoring
 - · Prometheus, Grafana, Alertmanager, k8s dashboard, fluentd
- Networking
 - Weave CNI, MetalLB, Ingress Nginx, Istio (beta state)
- Policy
 - ResourceQuotas, Kyverno

Highlights of ansible

- Ansible vault for managing secrets
- Coordination between nodes (e.g drain)
- Community modules/roles

Off-prem clusters

- ${\sim}8000$ CPUs and ${\sim}60$ A100 GPUs
- VMs provisioned in STFC/IRIS cloud
- Then we deploy kubernetes with ansible as usual

Off-prem clusters

- · Cluster not directly exposed to users
- We run htcondor on these nodes
- · Users can submit from head nodes in Argus
- Handles "offline" processing
 - Non-realtime, post visit processing

Future clusters

- Cluster per beamline
 - Failure/admin/security domain
 - · Downside: many more clusters to manage
- Primary network (airgapped) cluster
 - Needs special consideration
 - · Recently set up Harbor as a container image proxy/cache

I'm here to learn

- Multi cluster management (ClusterAPI etc.)
 - How well do they work
 - · How well do they handle physical hardware
- Any experience running airgapped clusters?

"The cloud team":

- Chris Reynolds
- Richard Parke
- Thomas Hartland

