

Photon, electron, and neutron? detection with diamond at elevated temperatures

Colin Bodie Space Research Group University of Sussex Brighton

Outline

- Spectroscopic photon counting
- Electron/β particle spectroscopy
- Modelling Gd-diamond for neutron detection
- Outlook, challenges, and questions

Motivation

- Nuclear science
- Space science
- No cooling required?
- Radiation tolerant? Less or no detector shielding, longer operational lifetime

Diamond benefits

- Wide bandgap material (5.47 eV)
- High drift mobility, e⁻ = 4500 cm² V⁻¹ s⁻¹ h⁺ = 3800 cm² V⁻¹ s⁻¹

 Light inconsitive ~ 220 nm
- Light insensitive ≈ 220 nm

Diamond detriments

- Wide bandgap (5.47 eV) Large e⁻-h⁺ pair creation energy ≈ 13 eV (X-ray photons) Small signal to noise ratio of the charge pulse
- Defects/impurities/charge trapping/recombination/polarisation

Photon spectroscopy - diamond and other materials

$$I(z) = I_0 \exp(-\mu z)$$

$$\mu = \mu_m \rho$$
Si
SiC
Diamond
AI_{0.8}Ga_{0.2}As
CdZnTe
$$I(z) = I_0 \exp(-\mu z)$$

Pre-amplifier(s)

Results - Room temperature (20 °C)

Source = 55 Fe Shaping = 3 µs $V_{applied} = 50$ V Acc time = 90 s

Noise analysis (20 °C)

High temperatures (≤ 100 °C)

Highlights

- Mn Kα (5.9 keV) photopeak FWHM = 2.93 keV at 60 °C
- Ag Kα₁ (22.16 keV) photopeak
 FWHM = 4.75 keV at 100 °C
- ¹⁰⁹Cd (88.03 keV) γ-ray FWHM = 4.13 keV at 100 °C

$T = 20 \,^{\circ}\text{C}$

$T = 100 \,^{\circ}\text{C}$

Source = 109 Cd, Shaping = 1 µs $V_{applied}$ = 50 V, Acc time = 90 s

$T = 20 \,^{\circ}\text{C}$

4 hours accumulation

88 keV count rate = 2 s^{-1}

Higher temperatures ($\leq 100 \ ^{\circ}C$) Lowlights

- Inconclusive results with respect to incomplete charge collection noise
- Dissimilar counting rates at 5.9 keV and 22.16 keV could have introduced parasitic effects
- Count rate varied as a function of shaping time at T > 60 °C

β spectroscopy

 β Source = ⁶³Ni $\tau = 2 \ \mu s$ $V_{applied} = 50 \text{ V}$ Acc time = 30 mins $T = 80 \,^{\circ}\text{C} \,(\text{black})$ $T = 60 \,^{\circ}\text{C} \,(\text{red})$ $T = 40 \,^{\circ}\text{C}$ (orange) $T = 20 \,^{\circ}\text{C}$ (yellow)

β spectroscopy

 β Source = ⁶³Ni $\tau = 2 \ \mu$ s Acc time = 30 mins $V_{applied} = 50 \ V$ $T = 100 \ ^{\circ}C$

β spectroscopy calibration - emission spectrum

β spectroscopy calibration – detector efficiency

β spectroscopy calibration - combined

Modelling Gd-diamond neutron detectors

- ⁶Li cross section \approx 940 b
- ¹⁰B cross section \approx 749 b
- ¹⁵⁵Gd and ¹⁵⁷Gd

Modelling Gd-diamond neutron detectors

Gd isotope (Nucleon number)	Isotopic abundance <i>f</i> i (%)	Cross section σ _i (b)	Fractional interaction <i>C</i> i (%)
152	0.2	755 ± 20	0.003
154	2.2	85 ± 12	0.004
155	14.8	60330 ± 500	18.293
156	20.5	1.8 ± 0.7	0.001
157	15.7	254000 ± 815	81.698
158	24.8	2.22 ± 0.1	0.001
160	21.8	1.4 ± 0.3	0.001

$\sigma_t = 48800 \text{ b} \pm 200 \text{ b}$

${}^{155}_{64}\text{Gd} + {}^{1}_{0}\text{n} \rightarrow {}^{156}_{64}\text{Gd}^{*} + \gamma - \text{ray} + e^{-}; Q = 8536 \text{ keV} \pm 0.07 \text{ keV}$ ${}^{157}_{64}\text{Gd} + {}^{1}_{0}\text{n} \rightarrow {}^{158}_{64}\text{Gd}^{*} + \gamma - \text{ray} + e^{-}; Q = 7937 \text{ keV} \pm 0.06 \text{ keV}$

Conversion electrons in 10 µm foil of Gd

Prior to energy straggling

After straggling through remaining layer

10 µm foil of Gd – diamond detector

0.7 µm foil of Gd – diamond detector

Outlook, challenges, questions?

Thanks and acknowledgements

- Micron semiconductor for the diamond detectors Dr Gwen Lefeuvre for fabrication
- STFC for the funding and the studentship
- QMUL for the invitation to speak

