

Jet-flavour tagging at FCC-ee/hh experiments

FCC UK Meeting 29th November 2023

Wei Sheng Lai Tim Scanlon Nikita Pond₁

Overview

Very much a work in progress:

- Flavour tagging
 - Graph Neural Network (GNN) Algorithm
- FCC-ee (replicate ParticleNet results)
 - Data
 - Input variables
 - Results
- FCC-hh (first attempt at FCC-hh GNN tagger)
 - Data
 - Input variables
 - Results
- Summary

FCC

Flavour tagging (b-tagging)

Why?

- Many signatures of interest contain b-jets
 - e.g Higgs boson decay
- Also useful for rejecting backgrounds
 - e.g. $t\overline{t}$ production can be troublesome $(t \rightarrow bW)$

How?

- b-hadrons have a relatively long lifetime (~1.5ps)
- Travel a measurable distance before decaying
- Presence of 1+ displaced vertex within the jet
- Tracks with large impact parameter values (d_0)

GN2

- Use Graph Neural Network (transformer architecture) to predict jet flavour
 - Using public ATLAS GN2 package [ATL-PHYS-PUB-2022-027]
- Nodes (tracks) connected via edges (vertices)
- Predict: Jet flavour classification (primary objective), track truth origin and vertexing (auxiliary objectives)

Question: Performance at future collider experiments?

FCC-ee IDEA detector

Setup and Data

Particle-Net [1902.08570] results already produced on FCC-ee [2202.03285]

- Authors very helpfully provided their samples/code and input
- Use as benchmark to test setup, code generation and relative performance

Simulated using Delphes:

• Additional TrackCovariance Module to simulate track parameters

Event generation (Madgraph + Pythia)

- $ee \rightarrow ZH \rightarrow \nu\nu jj \ (\sqrt{s} = 240 \text{ GeV})$
- Focus on identifying jets from Higgs decays (b, c, s, ud, gluon)
- 10 million jets labelled according to the Higgs decay process
 - Some issues, but kept to allow fair comparison

Input variables

Jet Variables	Description		
p_T	Jet transverse momentum		
η	Jet pseudorapidity		Jet kinematics
Track Variables	Description		
$E_{\rm const}/E_{\rm jet}$	Energy of jet constituent divided by the jet energy		
$ heta_{ ext{eta}}$	Polar angle of the jet constituent, relative to the jet momentum	≻	Relative kinematics
$\phi_{ m rel}$	Azimuthal angle of the jet constituent, relative to the jet momentum		Nelative Kinematics
d_{xy}	Transverse impact parameter of the track		
d_z	Longitudinal impact parameter of the track		
SIP_{2D}	Signed 2D impact parameter of the track		
$\mathrm{SIP}_{\mathrm{2D}}/\sigma_{\mathrm{2D}}$	Signed 2D impact parameter significance of the track		
$\mathrm{SIP}_{\mathrm{3D}}$	Signed 3D impact parameter of the track		Track parameters
${ m SIP}_{ m 3D}/\sigma_{ m 3D}$	Signed 3D impact parameter significance of the track		Hack parameters
$d_{ m 3D}$	Jet track distance at their point of closest approach		
$d_{ m 3D}/\sigma_{d m 3D}$	Jet track distance significance at their point of closest approach		
C_{ij}	Covariance matrix of track parameters	ノ	
\overline{q}	Electric charge of the particle		
$m_{ m t.o.f}$	Mass of particle calculated from time-of-flight		
$\mathrm{d}N/\mathrm{d}x$	Number of primary ionisation clusters along track	_	
isMuon	If the particle is identified as muon	. I 🖉	
isElectron	If the particle is identified as electron		Particle Identification
isPhoton	If the particle is identified as photon	-	
is Charged Hadron	If the particle is identified as a charged hadron		
isNeutralHadron	If the particle is identified as a neutral hadron	J	

Performance

GN2 trained on identical dataset used for ParticleNetIDEA model

Discriminant Function constructed to study the discriminant between pairs of flavour

i = signal flavourj = background flavour

Results:

FCC

- Reproduced ParticleNetIDEA results
- Validated sample generation/evaluation
- Demonstrated superior GN2
 performance

GN2 @ FCC-ee

FCC-hh

Goal: Study flavour-tagging performance for FCC-hh configuration

Simulating data

FCC

- Modified baseline FCC-hh Delphes cards based on conceptual design report (CDR) [CERN-2022-002]
- Using TrackCovariance module to simulate full track covariance matrix:
 - Implemented description of tracking detector (geometry, radiation length, resolution)
 - Validated resolutions agree with predictions from CDR
 - Will propagate back into official repository

Simulating data

- $pp \rightarrow ZH \rightarrow \nu\nu jj (\sqrt{s} = 100 \text{ TeV})$
- Start without pileup (6 million jets)
- Higgs decays into pair of different flavour jets
- Labelling of jet flavour is done based on truth hadron content
 - Similar to ATLAS/CMS approach

Jet Flavour	Presence of b-Hadron	Presence of c-Hadron
b-jet	\checkmark	-
c-jet	×	\checkmark
light-jet	×	×

ATLAS-style discriminant

$$D_b = \ln\left(\frac{p_b}{f_c \cdot p_c + (1 - f_c) \cdot p_l}\right)$$

GN2 @ FCC-hh

At 70% b-jet efficiency:

<i>c</i> -jet rejection	~10 ³
<i>light</i> -jet rejection	~4000

GN2 @ FCC-hh

FCC

Measuring performance relative to most important kinematic variables

Summary

light-jet rejection

0.95

Workflow established to study flavour tagging performance at FCC experiments

Next steps

- **Further validation**
- Generate higher p_T jets to study performance up to the TeV range (BSM Z')
- Include expected pile up of FCC-hh ($\mu = 1000$) [Very time consuming at first attempt]
- Test impact of different detector design
- Parameterise performance for di-Higgs and boosted Higgs analysis at FCC-hh FCC 29/11/2023

Backup

GN2 @ FCC-hh (c-tagging)

IDEA vs FCC-hh 1st layer

IDEA detector silicon pixel pitch size:

- 20um x 20um
- Resolution of 3um x 3um

FCChh detector silicon pixel pitch size:

- 25um x 50um
- Resolution of 7um x 14 um

at layout:
at layout:

Pixels (inner)	Macro-pixels (middle)	Striplets/Macro-pixels (outer)
$25 imes50\mathrm{\mu m}^2$ (1–4th BRL)	$33.3 imes400{ m \mu m}^2$	$33.3\mu\mathrm{m} \times 50\mathrm{mm}$ (BRL)
$25 imes50\mathrm{\mu m}^2$ (1st EC ring)		$33.3\mu\mathrm{m} imes 10\mathrm{mm}$ (EC)
$33.3 imes100\mathrm{\mu m}^2$ (2nd EC ring)		
$33.3 imes400\mathrm{\mu m}^2$ (3–4th EC ring)		

IDEA vs FCC-hh 1st layer

Inner layer of IDEA assumed to be closer to collision point

TABLE I. – The main parameters of the IDEA concept detector.

Parameters	
vertex technology	silicon
vertex inner/outer radius (cm)	1.1/54
tracker technology	drift chamber and silicon wrapper
tracker half length (m)	2.0
tracker outer radius (m)	2.0
solenoid field (T)	2.0
solenoid bore radius/half length (m)	2.1/3.0
preshower absorber	lead
preshower R_{min}/R_{max} (m)	2.4/2.5
DR calorimeter absorber	copper
DR calorimeter R_{min}/R_{max} (m)	2.5/4.5
overall height/length (m)	11/13

Layer no :	1	2	3	4	5	6	Total
Average radius [mm] :	25.00	60.00	100.00	150.00	270.00	400.00	
Radius-min [mm] :	23.28	58.28	98.28	148.28	261.07	391.07	
Radius-max [mm] :	27.47	63.03	102.52	152.26	280.11	409.73	
Z-min [mm] :	-685.0	-820.0	-820.0	-820.0	-820.0	-820.0	
Z-max [mm] :	685.0	820.0	820.0	820.0	820.0	820.0	
Number of rods :	14	16	26	38	34	50	
Number of modules per rod :	20	40	40	40	17	17	
Number of modules :	280	640	1040	1520	578	850	4908
Disk no :	1	2	3	4	5	Total (+Z & -Z)
Radius-min [mm] :	25.0	25.0	25.0	25.0	25.0		
Radius-max [mm] :	404.0	404.0	404.0	404.0	404.0		
Average Z pos. [mm] :	950.0	1178.5	1462.0	1813.7	2250.0		
Z-min [mm] :	941.1	1169.6	1453.1	1804.8	2241.1		
Z-max [mm] :	958.9	1187.5	1471.0	1822.6	2258.9		
Number of rings :	4	4	4	4	4		
Number of modules per disk :	108	108	108	108	108	1080	
Ring no :	1	2	3 4				
R-min [mm] :	25.0	101.3	198.9 30	02.6			
R-max [mm] :	104.7	204.6	303.4 40	04.0			
Number of modules per ring :	12	20	32 44	1			

IDEA detector

FCC detector

Type	Name	GN1	GN2
Hyperparameter	Trainable parameters	0.8M	$1.5\mathrm{M}$
Hyperparameter	Learning rate	1e-3	OneCycle LRS (max LR $4e-5$)
Hyperparameter	GNN Layers	3	6
Hyperparameter	Attention Heads	2	8
Hyperparameter	Embed. dim	128	192
Architectural	Attention type	GATv2	ScaledDotProduct
Architectural	Dense update	No	Yes (dim 256)
Architectural	Separate value projection	No	Yes
Architectural	LayerNorm + Dropout	No	Yes
Inputs	Num. training jets	30M	192M

[FTAG-2023-01]

GN2 @ ATLAS vs FCC-hh

FCC

GN2 @ ATLAS vs FCC-hh

Resolution values of $10.0\pm0.1 \,\mu m$

Detector envelopes (mm)

IBL	31 <r<40< td=""></r<40<>
Pixel	42.5 <r<242< td=""></r<242<>
SCT barrel	255 <r<549< td=""></r<549<>
SCT end-cap	251 <r<610< td=""></r<610<>
TRT barrel	554 <r<1082< td=""></r<1082<>
TRT end-cap	617 <r<1106< td=""></r<1106<>

Laver no : 5 6 Total 1 2 3 4 Average radius [mm] : 25.00 60.00 100.00 150.00 270.00 400.00 Radius-min [mm] : 23.28 58.28 98.28 148.28 261.07 391.07 Radius-max [mm] : 27.47 63.03 102.52 152.26 280.11 409.73 Z-min [mm]: -685.0 -820.0 -820.0 -820.0 -820.0 -820.0 Z-max [mm] : 685.0 820.0 820.0 820.0 820.0 820.0 Number of rods : 16 26 38 34 50 14 40 17 17 Number of modules per rod : 20 40 40 Number of modules : 280 640 1040 1520 578 850 4908 Disk no : Total (+Z & -Z) 2 3 5 1 4 Radius-min [mm] : 25.0 25.0 25.0 25.0 25.0 Radius-max [mm] : 404.0 404.0 404.0 404.0 404.0 Average Z pos. [mm] : 950.0 1178.5 1462.0 1813.7 2250.0 Z-min [mm] : 941.1 1169.6 1453.1 1804.8 2241.1 Z-max [mm] : 958.9 1187.5 1471.0 1822.6 2258.9 Number of rings : 4 4 4 4 4 Number of modules per disk : 108 108 108 108 108 1080 Ring no : 1 2 3 4 R-min [mm] : 25.0 101.3 198.9 302.6 R-max [mm] : 104.7 204.6 303.4 404.0 Number of modules per ring: 12 20 32 44

Flat layout:

Pixels (inner)	Macro-pixels (middle)	Striplets/Macro-pixels (outer)
$\frac{25 \times 50 \mu\text{m}^2}{25 \times 50 \mu\text{m}^2} (1-4\text{th BRL})$ $\frac{25 \times 50 \mu\text{m}^2}{13\text{t EC ring}} (1\text{st EC ring})$ $\frac{33.3 \times 100 \mu\text{m}^2}{33.3 \times 400 \mu\text{m}^2} (3-4\text{th EC ring})$	$33.3\times400\mu\text{m}^2$	$\begin{array}{l} 33.3\mu\mathrm{m}\times50\mathrm{mm}(\mathrm{BRL})\\ 33.3\mu\mathrm{m}\times10\mathrm{mm}(\mathrm{EC}) \end{array}$

FCChh detector silicon pixel pitch size:

- 25um x 50um
- Resolution of 7um x 14 um