

Long-lived particle production at FCC-ee

FCC UK meeting @QMUL 29/11/2023

Sarah Williams (University of Cambridge)

Introduction

- I am going to give a very brief overview of FCC ee LLP studies.
- My work:
 - BSM MC contact for FCC.
 - Focus so far on through masters
 - ECFA "expert te part of the e+e-
- Key message: there are a friendly group support to get involved.

Physics landscape at FCC-ee

- Broad landscape of physics opportunities which include direct and indirect sensitivity to new physics.
- Unique sensitivity to feebly interacting particles and LLPs means we are in an exciting position to design detectors with these scenarios in mind.

Long-lived signatures at colliders

UNIVERSITY OF

LLPs that are semi-stable or decay in the sub-detectors are predicted in a variety of BSM models:

- Heavy Neutral Leptons (HNLs)
- RPV SUSY
- ALPs
- Dark sector models

The range of unconventional signatures and rich phenomenology means that understanding the impact of detector design/performance on the sensitivity of future experiments is key!

LLPs @ FCC-ee

- Targeting precision measurements of EWK/Higgs/top sector of SM.
- Unique sensitivity to LLPs coupling to Z or Higgs.
 - No trigger requirements.
 - Excellent vertex reconstruction and impact parameter resolution can target low LLP lifetimes (this can drive hardware choices).
 - Projections often assume background-free searches (should check these assumptions).

Detector concepts for FCC-ee

See <u>HECATE</u> article for discussion on gains in sensitivity with additional instrumentation on the cavern walls

IDEA ("Innovative Detector for Electron-positron Accelerator")

Noble-liquid ECAL (newest proposal)

Full silicon vertex-detector+ tracker 3D high-granularity calorimeter Solenoid outside calorimeter Silicon vertex detector HG noble liquid ECAL. Short-drift chamber tracker. LAr or LAr+lead Dual-readout calorimeter absorber (solenoid inside)

We have exciting prospects to optimize detector design with LLP searches in mind!

FCC-ee LLP group: past and present

- Following a <u>Snowmass LOI</u>, an LLP white paper was recently published in <u>Front</u>. <u>Phys. 10:967881 (2022)</u> which included case studies with the official FCC analysis tools.
- These initial studies motivate further optimization of experimental conditions and analysis techniques for LLP signatures.
- Currently a very active community, with meetings on Thursdays 13:00 CERN time.

Searches for long-lived particles at the future FCC-ee

C. B. Verhaaren¹, J. Alimena^{2*}, M. Bauer³, P. Azzi⁴, R. Ruiz⁵, M. Neubert^{6,7}, O. Mikulenko⁸, M. Ovchynnikov⁸, M. Drewes⁹, J. Klaric⁹, A. Blondel¹⁰, C. Rizzi¹⁰, A. Sfyrla¹⁰, T. Sharma¹⁰, S. Kulkarni¹¹, A. Thamm¹², A. Blondel¹³, R. Gonzalez Suarez¹⁴ and L. Rygaard¹⁴

¹Department of Physics and Astronomy, Brigham Young University, Provo, UT, United States, ²Experimental Physics Department, CERN, Geneva, Switzerland, ³Department of Physics, Durham University, Durham, United Kingdom, ⁴INFN, Section of Padova, Padova, Italy, ⁵Institute of Nuclear Physics, Polish Academy of Sciences, Kracow, Poland, ⁶Johannes Gutenberg University, Mainz, Germany, ⁷Cornell University, Ithaca, NY, United States, ⁸Leiden University, Leiden, Netherlands, ⁹Université Catholique de Louvain, Louvain-la-Neuve, Belgium, ¹⁰University of Geneva, Geneva, Switzerland, ¹¹University of Graz, Graz, Austria, ¹²The University of Melbourne, Parkville, VIC, Australia, ¹³LPNHE, Université Paris-Sorbonne, Paris, France, ¹⁴Uppsala University, Uppsala Sweden

Will summarise (some) recent activities (further details in backup and in LLP talk at the London FCC week) and look ahead...

Summary of snowmass studies + ongoing activities in LLP group (as of mid-term report)

Physics scenario	FCC-ee signature	Studies for snowmass	Ongoing work
Heavy neutral leptons (HNLs)	Displaced vertices $ \int_{e^+} \int_{e^+} \int_{e^-} \int_{e^-}$	Generator validation and detector-level selection studies for $ee\nu\nu$. First look at Dirac vs Majorana	 Update eevv studies for winter23 samples. First look at μμνν channel (prompt +LLP) First look at μνjj (prompt+LLP) First look at evjj including Dirac vs majorana (prompt)
Axion-like particles (ALPs)	Displaced photon/lepton pair	Generator-level validation for $a \rightarrow \gamma \gamma$ at Z-pole run.	No studies ongoing currently!
Exotic Higgs decays	e.g. $z \xrightarrow{x_{SM}} x_{SM}$	Theoretical discussion and motivation for studies at ZH-pole	 Reco-level studies (inc. vertexing) for h→ss→bbbb

Current workflow

Most studies so far use Pythia+Delphes for backgrounds- would like to move to FullSim and be able to consider alternative generators.

Typical workflow	 Sample generation of models MadGraph5_aMC@NLO for parton-level e⁺e⁻ PYTHIA for parton shower and hadronisation 	Parametrised detector simulation • IDEA DELPHES card	Analysis tools • FCC analysis	Sensitivity to studied model
		_		

- Use FCCAnalysis software to analyse centrally generated EDM4HEP files, though some signal files produced privately.
- Dedicated <u>LLP tutorial</u> prepared by Juliette Alimena enables full workflow.
- Current limitations include scalability of code and limited MC statistics (more on that later).

Heavy Neutral Leptons (HNL) at FCC-ee

Snowmass review: arXiv:2203.08039

<u>Front. Phys. 10:967881 (2022)</u>

- Right- handed (sterile) neutrinos could provide an explanation for neutrino masses, the baryon asymmetry in the universe and dark matter.
- For small mixing angles with their LH counterparts- long-lived.
- Obvious benchmark for LLP searches with displaced vertices.

$$\lambda_N = \frac{\beta \gamma}{\Gamma_N} \simeq \frac{1.6}{U^2 c_{\text{dec}}} \left(\frac{M}{\text{GeV}}\right)^{-6} \left(1 - (M/m_Z)^2\right) \text{cm.}$$

 c_{det} = 1 (majorana) or ½ (dirac)

arXiv:2210.17110 i.e. LLPs when couplings and masses are small!

HNL searches at FCC-ee Tera-Z run

Front. Phys. 10:967881 (2022)

Searches for displaced HNL decays are most efficient at the Z-pole run (larger luminosity and cross-section from $Z \rightarrow N\nu$ decays). Benefit from:

- Low SM backgrounds with displaced vertex.
- Small beam pipe radius.
- Clean experimental conditions.

For N \rightarrow WI decays, depending on the W decay final states include II' $\nu\nu$ or I ν jj

.

100 200 300 400 500 600 700 800 900 1000

 10^{-2}

10-3

FCC UK meeting 29/11/23 – Sarah Williams

Reco N L_{xvz} [mm]

HNL sensitivity study: $N \rightarrow eev$

Note: ongoing investigation show these distributions look different with the 2023 samples (in backup)

Initial study developed an event selection to reduce the backgrounds:

- 2 electrons with a veto on additional photons, jets, muons.
- p^{Miss}> 10 GeV to reduce the Z→ee background with instrumental missing momentum.
 Also studied angular distributions sensitive
- Electron $|d_0| > 0.5$ mm

Also studied angular distributions sensitive to majorana vs Dirac nature of HNLs...

Ongoing HNL studies : winter 2023 production

MC Statistics of spring 2021 campaign

Sample	Integrated Iumi/ ab ⁻¹
p8_ee_Zee_ecm91	0.01
p8_ee_Zbb_ecm91	0.15
p8_ee_Ztautau_ecm91	0.01
p8_ee_Zuds_ecm91	0.05
p8_ee_Zcc_ecm91	0.19

Improvements/changes in winter2023 samples have a visible difference on shape, and MC statistics still present significant limitations (under discussion).

Ongoing work: implementing MC filters

In order to get adequate MC statistics at the Z-pole run for LLP studiesneed filtered MC samples!

- Significant technical work ongoing to implement flexible MC filtered that can be used in the key4hep framework and the FCC production system.
- Aiming to use filtered samples to perform further sensitivity and detector optimisations.

https://github.com/key4hep

For more details on key4hep see my talk from last week at the Swift HEP workshop, which contains a lot of additional links.

Conclusions/outlook

- If they exist- LLPs would be a "win-win" scenario for FCC-ee – we need to ensure we are prepared to measure them!
 - Typically ~ background-free analyseschecking these assumptions is important as well as considering signal acceptance
 - Aim for discovery need to study detector implications for our ability to characterise the new physics, not just uncover it.

Moving on from the mid-term review- there's a lot to do by the end of the feasibility study. It's a fun and exciting area to contribute. Interested? Get in touch...

Backup: FCC-ee LLP masters thesis projects

- <u>Sissel Bay Nielsen (University of Copenhagen, 2017)</u>
- Rohini Sengupta (Uppsala University, 2021)
- Lovisa Rygaard (Uppsala University, 2022)
- Tanishq Sharma (University of Geneva, 2022)
- <u>Magdalena Vande Voorde (Uppsala University, 2023)</u>
- Daniel Beech (University of Cambridge, 2023)
- Dimitri Moulin (University of Geneva, 2023)

...and more on the way!

Backup: FCC-ee

The high luminosities and clean experimental environment (no underlying event) make FCC-ee a natural laboratory to study LLPs through:

- Unconventional signatures (including displaced vertices).
- Exotic Higgs decays.

Phase	Run duration (years)	Centre-of-mass energies (GeV)	Integrated lumi- nosity (ab ⁻¹)	Event statistics
FCC-ee-Z	4	88–95	150	3×10^{12} visible Z decays
FCC-ee-W	2	158-162	12	10 ⁸ WW events
FCC-ee-H	3	240	5	10^6 ZH events
FCC-ee-tt(1)	1	340-350	0.2	tt threshold scan
FCC-ee-tt(2)	4	365	1.5	10^6 tī events

Taken from FCC: physics opportunities (CDR volume 1)

Backup: FCC timelines

Taken from slides by F. Gianotti at FCC week.

- For small couplings and light ALPs \rightarrow LLP signature.
- Initial validation of signal samples and kinematic distributions presented- more to come in future.

Backup: Ongoing HNL studies: $N \rightarrow \mu j j$

80 M_{HN} (G eV/c²)

Nicolo Valle, Giacomo Polesello

Target decay $N \rightarrow \mu jj$ in HNL mass range 5 to 85 GeV with scan over $|U|^2$. Aim for prompt analysis at high (>50 GeV) HNL mass, with Long-lived analysis at low HNL mass (longer lifetime)

- Develop pre-selection (1 muon with p> 3 GeV, >= 3 tracks, E_{miss}>5 GeV).
- Detailed study of jet reconstruction algorithms for truth vs reco-level distributions.

Preliminary proto-analysis requiring muon $|d_0|$ >1mm. Investigating further selection requirements using vertex fitter. Further discussion in recent physics+performance meeting <u>here</u> and in next talk !

Backup: Ongoing HNL studies: $N \rightarrow \mu \mu \nu$

Lorenzo Bellagamba

DV reconstruction efficiency a promising area for further improvements?

Covered in Nicolo's talk!

Backup: Ongoing HNL studies: N→ejj

Dimitri Moulin, Anna Sfyrla, Pantelis Kontaxakis

Study semi-leptonic final state to probe majorana vs dirac nature of HNL

- Use dijet + electron invariant mass as a probe for HNL mass.
- Observed some issues with default delphes jet collections- required rerunning jet reconstruction at analysis level to improve truth/reco comparisons.
- Next steps: develop full event selection and look at sensitive variables.

-> thinking about reconstruction techniques is important!

First simulation and sensitivity studies for Higgs decays to long-lived scalars

- Look at events with at least one scalar within acceptance region 4mm<r<2000mm- all except longest and shortest lifetimes.
- Aim to develop event selection and perform early sensitivity study.

For further details see <u>presentation</u> by Magda at topical ECFA WG1-SRCH meeting

- Extend SM with additional scalar.
- Probe h→ss→bbbb in events with 2 displaced vertices, tagged by Z

Magdalena Vande Voorde, Giulia Ripellino

Studied two options of DV reconstruction implemented in FCCAnalysis framework with additional constraints inspired by ATLAS DV analysis (link <u>here</u>)

Magdalena Vande Voorde, Giulia Ripellino

Type	Parameter	Value
Track Selection	$ Min \ p_T $	1 GeV
	$ \operatorname{Min} d_0 $	$2 \mathrm{~mm}$
Vertex Reconstruction	V^0 rejection	True
	$\mathrm{Max}\;\chi^2$	9
	$Max \ M_{inv}$	$40~{ m GeV}$
	Max χ^2 added track	5
	Vertex merging	False
Vertex Selection	Min r_{DV-PV}	4 mm
	$\max r_{DV-PV}$	$2000 \mathrm{~mm}$
	Min $M_{charged}$	$1 { m GeV}$

FCCAnalyses: FCC-ee Simulation (Delphes)

$m_s, \sin heta$	Before selection	Pre-selection	$70 < m_{ll} < 110 { m ~GeV}$	$n_DVs \ge 2$
20 GeV, 1e-5	44.3 ± 0.0295	29.8 ± 0.363	28.9 ± 0.358	3.55 ± 0.125
20 GeV, 1e-6	44.3 ± 0.0295	30.4 ± 0.367	29.7 ± 0.363	22.4 ± 0.315
20 GeV, 1e-7	44.3 ± 0.0295	36.3 ± 0.401	35.6 ± 0.397	0.531 ± 0.0485
60 GeV, 1e-5	13.1 ± 0.00474	8.38 ± 0.105	8.12 ± 0.103	$0 \ (\leq 0.103)$
60 GeV, 1e-6	13.1 ± 0.00474	8.34 ± 0.104	8.09 ± 0.103	6.43 ± 0.0917
60 GeV, 1e-7	13.1 ± 0.00474	9.69 ± 0.113	9.45 ± 0.111	4.10 ± 0.0732

All but 2 considered signals could be excluded at 95% CL in background-free search.

Magdalena Vande Voorde, Giulia Ripellino

- Selected events that has \geq 1 scalar with decay length 4 mm < d < 2000 mm
 - $m_s = 20$ GeV, sin $\theta = 1e-7$ is too long-lived and $m_s = 60$ GeV, sin $\theta = 1e-5$ is too short lived
 - All the other signal samples has ≥ 4 events!

Mass of Scalar	Mixing angle	Mean proper	Cross Section	Branching Ratio	Expected events	Expected selected
m_S [GeV]	$\sin \theta$	lifetime $c\tau~[\rm{mm}]$	σ [pb]	$BR(h \rightarrow ss)$	at 5 ab^{-1}	events
20	1×10^{-5}	3.4	8.858×10^{-6}	6.27×10^{-4}	44.29	40.03
20	1×10^{-6}	341.7	8.858×10^{-6}	6.27×10^{-4}	44.29	43.31
20	1×10^{-7}	34167.0	8.858×10^{-6}	6.27×10^{-4}	44.29	1.57
60	1×10^{-5}	0.9	2.618×10^{-6}	1.85×10^{-4}	13.09	0.01
60	$1 imes 10^{-6}$	87.7	2.618×10^{-6}	1.85×10^{-4}	13.09	12.98
60	1×10^{-7}	8769.1	2.618×10^{-6}	1.85×10^{-4}	13.09	8.62

Number of expected events given by $N = L \times \sigma$ with $L = 5 ab^{-1}$ and $\sigma = \sigma_{ZH} \times BR(h \to ss) \times BR(s \to b\bar{b})^2 \times BR(Z \to l^+l^-)$ Old baseline results

Backup: further details on exotics Higgs studies

Magdalena Vande Voorde, Giulia Ripellino

Efficiency studies

	20 GeV, 1e-5	20 GeV, 1e-6	20 GeV, 1e-7
Before selection	1.0	1.0	1.0
Pre-selection	0.672	0.687	0.819
$ \ 70 < m_{ll} < 110 { m GeV} $	0.653 0.670		0.803
$n_{DVs} \ge 2$	0.080 0.505		0.012
	60 GeV, 1e-5	60 GeV, 1e-6	60 GeV, 1e-7
Before selection	1.0	1.0	1.0
Pre-selection	0.640	0.637	0.740
$ \ 70 < m_{ll} < 110 { m GeV} $	0.620	0.618	0.722
$n_{DVs} \ge 2$	0.0	0.491	0.313

	WW	ZZ	ZH
Before selection	1.0	1.0	1.0
Pre-selection	0.131	0.026	0.059
$ ~70 < m_{ll} < 110 { m ~GeV}$	0.006	0.086	0.047
$n_DVs \ge 2$	0.0	0.0	0.0