Diboson production and impact on global fits

FCC UK Meeting Queen Mary University of London, London, UK 29 November 2023

Eugenia Celada University of Manchester

The SMEFT

Original fig. by C. Severi, M. Thomas, E. Vryonidou

The SMEFT

Original fig. by C. Severi, M. Thomas, E. Vryonidou

$$\mathcal{L}_{\rm EFT} = \sum_{i} \frac{c_i}{\Lambda^{d-4}} \mathcal{O}_i^{(d)} = \mathcal{L}_{\rm SM}^{(4)} + \sum_{i} \frac{c_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \dots$$

SM fields and symmetries

The SMEFT

Original fig. by C. Severi, M. Thomas, E. Vryonidou

$$\mathcal{L}_{\rm EFT} = \sum_{i} \frac{c_i}{\Lambda^{d-4}} \mathcal{O}_i^{(d)} = \mathcal{L}_{\rm SM}^{(4)} + \sum_{i} \frac{c_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \dots \qquad \text{SM fields and symmetries}$$

Ultimate goal: bounds on Wilson coefficients — constraints on UV models

Higgs and EW physics at FCC-ee

FCC-ee design report [e2019-900045-4]

Higgs and EW physics at FCC-ee

FCC-ee design report [e2019-900045-4]

Diboson in SMEFT

Why diboson?

- probe of gauge bosons self-interaction
- interplay with the Higgs sector

Warsaw basis	
Operator	Definition
b	osonic
$\mathcal{O}_{\phi B}$	$(\phi^{\dagger}\phi)B^{\mu u}B_{\mu u}$
$\mathcal{O}_{\phi W}$	$(\phi^\dagger \phi) W^{\mu u}_I W^I_{\mu u}$
$\mathcal{O}_{\phi WB}$	$(\phi^\dagger au_I \phi) B^{\mu u} W^I_{\mu u}$
$\mathcal{O}_{\phi d}$	$\partial_\mu (\phi^\dagger \phi) \partial^\mu (\phi^\dagger \phi)$
$\mathcal{O}_{\phi D}$	$(\phi^\dagger D^\mu \phi)^\dagger (\phi^\dagger D_\mu \phi)$
\mathcal{O}_{WWW}	$\epsilon_{IJK} W^I_{\mu u} W^{J, u ho} W^{K,\mu}_{ ho}$
tw	o-fermion
$\mathcal{O}_{\phi \ell_i}^{(1)}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(ar{\ell}_i \gamma^\mu \ell_i)$
$\mathcal{O}_{\phi\ell_i}^{(3)}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu} au_{I}\phi)(\bar{\ell}_{i}\gamma^{\mu} au^{I}\ell_{i})$
$\mathcal{O}_{\phi e}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(ar{e}\gamma^\mu e)$
for	ur-fermion
$\mathcal{O}_{\ell\ell}$	$(ar{\ell}_1\gamma_\mu\ell_2)(ar{\ell}_2\gamma^\mu\ell_1)$

Higgstrahlung

- $e^-e^+ \rightarrow ZH$
- fully inclusive cross-section $\sigma(ZH)$ is possible thanks to recoil mass techniques

EC et al, in preparation

Expected significant improvement on current bounds

WW with Optimal Observables

Doubly resonant 4 fermion production

• fully leptonic

semileptonic

hadronic

WW with Optimal Observables

Doubly resonant 4 fermion production

fully leptonicsemileptonic

hadronic

ASSUMPTIONS

- linear dependence over WCs
- systematics is negligible

we can define Optimal Observables

- retain all the differential information
- maximal sensitivity to the Wilson coefficients

WW with Optimal Observables

J. de Blas et al. [1907.04311]

Optimal Observables

Consider a differential distribution

The Optimal Observables are defined as

Results

- EWPOs at Z-pole
- Higgs: $\sigma(ZH)$, $\sigma(ZH) \times BR(H)$, $\sigma(WW \to H) \times BR(H)$ at $\sqrt{s} = 240$, 365 GeV
- Optimal Observables: $e^-e^+ \to W^-W^+ \to \ell^- \bar{\nu}_\ell \ell^+ \nu_\ell$ at $\sqrt{s} = 240$, 365 GeV
- 95%CL individual bounds
- projected uncertainties from Snowmass '21 [2206.08326]
- linear LO SMEFT $\mathcal{O}(\Lambda^{-2})$

Global fits with SMEFiT

- open source python package for global SMEFT fits
 - T. Giani, G. Magni, J. Rojo [2302.06660]
- large HEP dataset (LHC Run I and II, LEP EWPOs)
- soon will support future collider projections (HL-LHC, FCC-ee)

SMEFiT collab., '24

