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Motivation

▶ Extremely strong physics case for FCC-ee (in my opinion)

▶ Beyond precision EW and Higgs there is an unparalled opportunity in heavy flavour

▶ Precision flavour measurements are a powerful discovery apparatus

▶ Loops receive NP contributions

▶ Consistency in flavour observables → NP unlikely at the LHC

▶ Heavy flavour observables have a strong history of finding new physics

▶ GIM mechanism → discovery of charm

▶ CP violation in K0
L decay → CKM mechanism → discovery of bottom and top

▶ EW precision fit → discovery of Higgs

▶ FCC-ee is a dream environment for heavy flavour

▶ Running at Z-pole or on-shell production of W±

▶ Get all the benefits of both Belle II and LHCb

▶ Beyond the pure physics case there are several strong sociological and long-term
physics arguments (in my opinion)
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Motivation

▶ FCC-ee is a dream environment for heavy flavour

▶ The Monteil-Wilkinson tick-list [EPJ+ 126 (2021) 8]

▶ Tera-Z run at the Z0-pole:

▶ 6× 1012 Z0 (across 4 experiments)

Species (both flavours) B0 B+ B0
s Λ0

b B+
c cc τ−τ+

Yield (billions) 740 740 180 160 3.6 720 200

▶ Giga-W run at W+W− threshold:

▶ 2.4× 108 W± pairs (across 4 experiments)
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Heavy flavour environment at the FCC

▶ Huge luminosity competes with pp cross section, 105Z/s, 104W/h, 103H, t/d

▶ Hundreds of billions of B mesons

▶ Clean environment, no pile-up, controlled beam background

▶ E and p constraints

▶ Minimal trigger losses

▶ Do LEP in ONE MINUTE!
→ many flavour (and EW) observables are still dominanted by LEP

▶ Boost at the Z → ⟨EB⟩ ≈ 70%× Ebeam ⟨βγ⟩ ≈ 6

▶ b fragmentation allows topological reconstruction

▶ the “other” b gives constraint on missing energy

▶ Large sample of W+W− (on-shell and boosted) will give access to all CKM element
magnitudes
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Detector requirements for flavour

Tracking

▶ Good p resolution is required for most physics at FCC

▶ Ability to reconstruct down to low momentum important for flavour

Vertexing

▶ Essential for huge parts of flavour program

▶ Resolve TD oscillations of B0
s so σt ∼ 50 fs

▶ Semi-leptonic and decays to τ , σv ∼ 5µm for 3-track vertex

Calorimetry

▶ Low multiplicity allows study of flavour with neutrals

▶ Anything with π0 or γ incredibly challenging at LHCb

▶ Need performance maintained at low energy

Particle ID

▶ Vital for any heavy flavour program

▶ Need effective kaon-pion separation across wide range of momentum

▶ Non-signal momenta ∼ 10GeV/c, signal momenta ∼ 30GeV/c
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The IDEA concept

▶ Si vertex detector (5 layers)

▶ Drift chamber (∼ 100 layers)

▶ Si strips

▶ Solenoid (2T, 5m)

▶ Preshower

▶ Calorimeter

▶ Muon chambers

▶ Solenoid inside the calorimeter (so needs to be thin)

▶ Large tracking volume (but needs low X0) with low power (air cooling)

▶ Vertex precision ∼ 3µm (but 5µm shown by ALICE)

▶ There is an IDEA card in DELPHES for simulation

▶ To what extent is this shovel ready? Can it hit desired performance targets?
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Physics Studies

Current / foreseen activities in flavour
▶ Rare semi-leptonic and leptonic decays

▶ b → sτ+τ−, B0
s → τ+τ−

▶ b → sνν (what I will show today)

▶ B+
c → τ+ντ

▶ b → s(d)ℓ+ℓ−

▶ CP violation and CKM
▶ CKM angle γ with B0

s → D−
s K+ and B+ → D0K+

▶ asl semileptonic asymmetries (CPV in mixing)

▶ CKM angle α

▶ Measurements of Vub, Vcb etc.

▶ Tau physics
▶ LFV and LFU in τ decay

▶ Charm physics
▶ Rare charm e.g. D → πνν, D0 → γγ

▶ Hadronic charm

* ECFA focus topics
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Contributing

How can you contribute?

▶ It’s very easy, you would be very welcome

▶ There is an IDEA card in DELPHES

▶ MC takes about a day to produce

▶ There is some simple reconstruction framework

▶ Can quickly produce nTuples

▶ Perfect as the “second project” of a capable PhD student

▶ Perfect way to engage the early careers in FCC activities

What should I do?

▶ Think of your favourite flavour measurement/observable that has missing energy
and/or neutrals

▶ These tend to be theoretically cleaner (leptonic, semi-leptonic decays)

▶ Perhaps something involving a B0
s to Λ0

b decay
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Case Study

Case Study

b → sνν
[arXiv:2309.11353]

▶ I don’t have time to cover everything

▶ I tend to dislike “whistle-stop” tours

▶ So I will present one specific topic that demon-
strates how far FCCee can go
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Physics motivation

▶ Considerable interest in the flavour community in b→ sℓ+ℓ− and b → cℓ−ν
transitions

▶ b → sνν transitions are complementary probes (ℓ+ and ν share a weak doublet)

▶ SM predictions are clean:

▶ Dominant uncertainties from hadronic form-factors and CKM elements

▶ No long-distance contributions from (in)famous charm loops

▶ Sensitive to a variety of NP scenarios e.g. Z′, leptoquarks etc.

Heff = −GF√
2
VtbV

∗
ts

∑
ij

(Cij
L Oij

L + Cij
ROij

R ) + h.c,

▶ In the SM, Cii
L = −6.35(7) and Cij

R = 0 [1, 2, 3, 4] 10/48



Experimental state-of-the-art

▶ FCC-ee provides a (possibly unique) opportunity for semileptonic flavour physics

▶ In the SM b → sνν BF predictions are O(10−5)

▶ B+ → K+νν has just been seen by Belle II [arXiv:2311.14647] - B = (2.3± 0.7)× 10−5

▶ 2.7σ enhancement from SM prediction

▶ From the underlying b → sνν̄ transition we can study:

Decay B-factories FCC-ee Current Limit SM prediction

B+ → K+νν ✔ ✔ < 1.6× 10−5 (4.0± 0.5)× 10−6

B+ → K∗+νν ✔ ✔ < 4.0× 10−5 (9.8± 1.1)× 10−6

B0 → K0
Sνν ✔ ✔ < 2.6× 10−5 (3.7± 0.4)× 10−6

B0 → K∗0νν ✔ ✔ < 1.8× 10−5 (9.2± 1.0)× 10−6

B0
s → ϕνν ✗ ✔ < 5.4× 10−3 (9.9± 0.7)× 10−6

Λ0
b → Λ0νν ✗ ✔ – –

▶ Decays with intermediate vectors are consierably easier experimentally

▶ single track is hard, final state neutral needs good K0
S/ Λ0 reco

▶ intermediate scalars are much cleaner for theory

▶ Decays with intermediate scalars are cleaner for theory

▶ With 2 neutrinos in the final state, decays are (probably) impossible at the LHC
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Event topology

We have studied the prospects for B0 → K∗0νν and B0
s → ϕνν

▶ Use the thrust axis for Z0 → qq to define event hemispheres

▶ Due to missing energy in the signal decay the two hemispheres have different energy
distributions

Plane normal to thrust axis 
defines the hemispheres
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Energy in each hemisphere
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Event-level MVA

▶ Background sample from inclusive Z0 → qq, cc, bb using PDG branching fractions

▶ Input variables are the event energy distributions and vertex information
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▶ Powerful seperation - cut at 0.6 has > 90% signal efficiency and ∼ 90% background
rejection

▶ Very similar for the B0
s → ϕνν mode
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Analysis-level MVA

▶ Train a second BDT on variables related to the candidate properties:

▶ Intermediate candidate kinematics

▶ Intermediate candidate topology

▶ The nominal B-meson energy (Z mass minus Erec)

▶ Use multivariate splines to build efficiency maps across the (BDT1, BDT2) plane

▶ Then maximise the FOM, S/
√
S +B, as a function of the BDT cuts for a range of

BF values
B0 → K∗0νν B0

s → ϕνν

15/48



Signal estimate

▶ Signal expectation is computed as

S = NZ B(Z → bb) 2 fB B(B → Y νν)B(Y → f) ϵspre ϵ
s
BDTs,

▶ Background expectation computed as

B =
∑

f∈{bb,cc,qq}

NZ B(Z → f) ϵbpre ϵ
b
BDTs,

assuming

▶ 6× 1012 Z0 in FCC-ee operation

▶ known / predicted production fractions and branching ratios

▶ analysis efficiencies
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B0 → K∗0νν Efficiency and Sensitivity

For optimal cuts at the
SM prediction:

▶ Signal efficiency ∼ 3.7%

▶ bb efficiency ∼ 10−7

▶ cc efficiency ∼ 10−9

▶ qq efficiency ∼ 10−9

▶ S/B ratio ∼ 1 : 20

▶ Sensitivity ∼ 0.53%

▶ For reference the current
Belle II B+ → K+νν
has ∼ 30%
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B0
s → ϕνν Efficiency and Sensitivity

For optimal cuts at the
SM prediction:

▶ Signal efficiency ∼ 7.4%

▶ bb efficiency ∼ 10−7

▶ cc efficiency ∼ 10−9

▶ qq efficiency ∼ 10−9

▶ S/B ratio ∼ 1 : 9

▶ Sensitivity ∼ 1.20%

▶ CEPC at ∼ 1.8%
[arXiv:2201.07374]
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PID requirements of the detector

▶ For serious flavour analysis at FCC-ee - hadronic PID separation is vital

▶ Our analysis assumes perfect PID

▶ Naively investigate this by making random swaps (no momentum dependence)

B0 → K∗0νν
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▶ K-π separation of 2σ would have negligible impact on the sensitivity
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PID requirements of the detector

▶ Pion from the K∗0 is down in the difficult region of ∼ 1GeV/c for dN/dx

▶ PID detector requirement perhaps need timing
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Vertexing requirements of the detector

▶ For serious flavour analysis at FCC-ee - precision vertexing is essential

▶ Our analysis assumes perfect vertex seeding

▶ Naively investigate this by making random swaps

B0 → K∗0νν
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B0
s → ϕνν
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▶ Need < 0.2mm resolution to mitigate vertex mis-id

▶ But this is already above the requirements for vertex precision anyway
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Global NP interpretations

▶ Shown here for the B0 → K∗0νν mode

▶ Sensitivity to BF should be sufficient to fit as a function of q2

▶ Expect direct measurements of FL could get to ∼ 2.5% (∼ 5%) for B0 → K∗0νν
(B0

s → ϕνν)
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Summary

▶ Precision flavour measurements set powerful constraints on NP

▶ Explaining flavour anomalies is how we built the SM

▶ FCC-ee offers an unparalled opportunity in heavy flavour measurements

▶ Beauty, charm and tau physics

▶ Operating at the Z-pole and W+W−

▶ It is the perfect environment for flavour physics

▶ FCC-ee will improve on almost all key flavour observables

▶ In certain sectors by orders of magnitude

▶ Pushes NP reach up to 102 − 104 TeV

▶ We need to build this machine!
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Searches at B-factories

▶ Searches at B-factories use B-mesons produced via e+e− → Υ(4S) → B+B−

▶ Event is tagged either inclusively or using specific hadronic or semileptonic decays of
the other B.

▶ Belle II results: BR( B+ → K+νν̄) < 4.1× 10−5 at 90% C.L. [arXiv:2104.12624].

▶ Expect to reach ∼ 10% precision on B+/B0 with 50 ab−1
[arXiv:1808.10567]

▶ FCC-ee is the only foreseen experiment that can improve Belle-II measurement
in the (far) future (apart from maybe CEPC)!
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Some places we cheat

Relevant for detector design

▶ Use the same vertexing procedure developed for B+
c → τ+ντ (see this talk for

details) which assumes perfect vertex seeding
→ implies we will have excellent vertex resolution

▶ We also truth match the kaon and pion daughters to have the correct mass
hypothesis (with the reconstructed momentum)
→ implies we will have excellent PID

▶ When we get a bit more advanced it would be nice to understand the impact of
relaxing these requirements.

▶ Also assume the K∗0 in the signal mode is pure K∗(892)0

None of this is particularly relevant for the event level MVA we have trained so far (and
show today) but it will be important for the next stage MVA
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Charged energy in each hemisphere

▶ More discrmination power in the minimum energy hemisphere (signal side) due to
missing energy in the signal decay
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Neutral energy in each hemisphere

▶ More discrmination power in the minimum energy hemisphere (signal side) due to
missing energy in the signal decay
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Charged multiplicity in each hemisphere

▶ More discrmination power in the minimum energy hemisphere (signal side) due to
missing energy in the signal decay
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Neutral multiplicity in each hemisphere

▶ More discrmination power in the minimum energy hemisphere (signal side) due to
missing energy in the signal decay
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Stage 1 Inputs

▶ The total reconstructed energy in each hemisphere,

▶ The total charged and neutral reconstructed energies of each hemisphere,

▶ The charged and neutral particle multiplicities in each hemisphere,

▶ The number of charged tracks used in the reconstruction of the primary vertex,

▶ The number of reconstructed vertices in the event,

▶ The number of candidates in the event

▶ The number of reconstructed vertices in each hemisphere,

▶ The minimum, maximum and average radial distance of all decay vertices from the
primary vertex.
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Stage 1 BDT
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Stage 2 BDT
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Stage 2 Inputs

▶ The intermediate candidate’s reconstructed mass

▶ The number of intermediate candidates in the event

▶ The candidate’s flight distance and flight distance χ2 from the primary vertex

▶ The x, y and z components of the reconstructed candidate’s momentum

▶ The scalar momentum of the candidate

▶ The transverse and longitudinal impact parameter of the candidate

▶ The minimum, maximum and average transverse and longitudinal impact parameters
of all other reconstructed vertices in the event

▶ The angle between the intermediate candidate and the thrust axis

▶ The mass of the primary vertex

▶ The nominal B candidate energy, defined as the Z mass minus all of the
reconstructed energy apart from the candidate children
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Backgrounds
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Spline Drop Off
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q2 distribution reweighting

▶ Our simulation uses phase space (PHSP) generation models

▶ We reweight the q2 distribution to match the latest theory predictions (from MR
and OS)
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Backgrounds
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 and Vub Vcb

6

Systematic uncertainties will eventually dominate 
the semileptonic  measurementsVcb

Present Day


σ(Vcb) ∼ 1.4 %

σ(Vub) ∼ 6.2 %
Full LHCb and Belle II datasets



σ(Vcb) ∼ 1.0 %
σ(Vub) ∼ 0.9 %

Crucial inputs for constraining new physics from rare meson decays and meson 
mixing - the largest source of uncertainty

Can we improve on this?

David Marzocca: 2nd ECFA Workshop 2023
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 from on-shell  decaysVcb W±

7

• Independent of the semileptonic measurements


• Independent of Lattice QCD inputs


 improved precision


• For   pairs relative uncertainty


 with perfect jet flavour tagging 

⟹
108 W± ∼ 0.14 %

Marie-Hélène Schune: 3rd FCC Workshop 2020

⟹ 

relative uncertainty

∼ 0.4 %

Can even be slightly more optimistic given there may be twice as many  pairs in the nominal running planW±

David Marzocca: 2nd ECFA Workshop 2023
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B(c) → τ+ντ

• precision on BFs


• Independent clean probes of  and 


• May help resolve the tension between 
exclusive and inclusive measurements


• Can also probe various NP models


• Charged Higgs


• Scalar leptoquarks


• Vector leptoquarks

∼ 2 %
Vub Vcb

8

[arxiv:2105.13330, arxiv:2305.02998]
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arxiv:2206.07501

Feynman diagrams for tree-level contributions from: charged Higgs (left), scalar leptoquarks 
(middle) and vector leptoquarks (right)
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B(c) → τ+ντ

9

[arxiv:2105.13330, arxiv:2305.02998]

Xunwu Zuo: EPS-HEP 2023

• Reconstruct  decay


• Decay topology split into high- and low-energy hemispheres


• 2-stage BDT selection: Hemisphere properties followed by 
candidate properties


• Determine ideal and pessimistic BF uncertainties


• 2% and 4% respectively

τ+ → π+π−π+ν̄τ

Comparison between current determinations of  and predicted 
determinations from Belle II and FCC-ee, where the FCC-ee values 

correspond to 2% and 4% uncertainty on .

Different central values are taken from the current Exclusive, Global and 

 values.

|Vub |

ℬ(B+ → τ+ντ)
B+ → τ+ντ

This study assumes  s so we could actually push it a little further!5 × 1012 Z0
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B0 → K*0τ+τ−
• Yet to be observed -  BF


• Current limit 


• Many NP models expect NP to couple primarily to the 
Higgs and the third generation Ben Stefanek: 2nd 
ECFA Workshop 2023


• Focus again on the the 3-prong  decay


• Use energy-momentum conservation to resolve  
kinematics


• BDT trained with candidate kinematics to reduce 
backgrounds


• Signal yield extracted with an unbinned ML fit to the 
candidate B mass

𝒪(10−7)
𝒪(10−4) − 𝒪(10−3)

τ+ → π+π−π+ν̄

ν

13

Schematic of the signal decay

Tristan Miralles: FCC Week 2023

 candidate invariant mass fit to rescaled signal and 
background MC

B0
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 sensitivityB0 → K*0τ+τ−
• Current FCC-ee and IDEA would not allow 

for discovery of this mode


• Clearly some work to do!


• Better vertexing?


• Easier said than done


• Higher luminosity/longer run period?


• Difficult/competition with other runs


• Consider other  decays?


• Leptonics harder to handle but would 
produce  times the data

τ

𝒪(10)
14

Tristan Miralles: FCC Week 2023

Dependence of the relative signal yield uncertainty on the vertex resolution 
of the IDEA detector
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Motivations for precise  measurementsτ
•  is a SM parameter - must push experimental sensitivity as far as possible


• Required for predictions of  BF predictions


• Necessary to determine strong-coupling, , at the  scale


• Enters LFU tests at the fifth power


• A recent Belle II analysis, arxiv:2305.19116, gives the precise measurement 
 


• systematically limited! 


• Can also directly measure lifetime and BFs

mτ

τ

αs mτ

mτ = 1777.09 ± 0.08 ± 0.11 MeV/c2

15

Alberto Lusiani: FCC Week 2023
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 systematicsmτ
• Belle II primarily suffers due to


• Knowledge of the beam energy


• Momentum corrections due to scale factor 
dependence on 


• FCC-ee should be able to significantly reduce 
these effects


• Beam energy should be known to within 1ppm


• ~2ppm momentum scale calibration should be 
possible using 


• Baseline IDEA should be sufficient to obtain 
14ppm measurement of  

pT

mj/ψ

mτ ∼ 0.02 MeV/c2

16

Systematic uncertainties in the Belle II  measurement 
arxiv:2305.19116

mτ

Alberto Lusiani: FCC Week 2023
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 lifetime and BFsτ±
• FCC-ee should provide the most precise 

measurements of  lifetimes and BFs


• For lifetime


• Impact parameter resolution for  decay tracks 



• Uncertainty on the average length scale of vertex 
detector elements 


• For BFs


• Good EM energy resolution,  
(LEP)


• Granular EM calorimeter  (LEP)

τ

τ
≤ 61μm

≤ 4.8ppm

< 20 % / E(GeV)

> 15 × 15 mrad2

17

Alberto Lusiani: FCC Week 2023

Should temper expectations a little as these plots assume  s8 × 1012 Z0
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