High-energy ep/eA physics with the LHeC and FCC-eh sustainable future colliders with impact

UK FCC meeting, November 2023

Jorgen D'Hondt Vrije Universiteit Brussel on behalf of the ep/eA Coordination Panel

The landscape of particle physics colliders *at CERN*

pp (and AA/pA)

LHC (7-14 TeV)

Accelerator R&D Roadmap prioritizes progress on <u>these technologies</u> to enable future particle accelerators in a timely, affordable and sustainable way

CERN Yellow Rep. Monogr. 1 (2022) 1-270, https://cds.cern.ch/record/2800190?ln=en

Accelerator R&D Roadmap prioritizes progress on <u>these technologies</u> to enable future particle accelerators in a timely, affordable and sustainable way

CERN Yellow Rep. Monogr. 1 (2022) 1-270, https://cds.cern.ch/record/2800190?ln=en

particle physics ambition
high-energy & high-current beams
(energy x current = power)

particle physics ambition high-energy & high-current beams (energy x current = power)

caveat

power requirements of future colliders

focus on electron/positron accelerators

Energy Recovery demonstrated

great achievements on all aspects and large research infrastructures based on Energy Recovery systems have been operated successfully

bERLinPro & PERLE

essential accelerator R&D labs with ambitions overlapping with those of the particle physics community

towards high energy & high power

Energy Recovery demonstrated

great achievements on all aspects and large research infrastructures based on Energy Recovery systems have been operated successfully

ERL to enable high-power beams that would otherwise require one or more nuclear power plants

Future ERL-based Colliders

H, HH, ep/eA, muons, ...

bERLinPro & PERLE

essential accelerator R&D labs with ambitions overlapping with those of the particle physics community

towards high energy & high power

Energy Recovery demonstrated

great achievements on all aspects and large research infrastructures based on Energy Recovery systems have been operated successfully

ERL to enable high-power beams that would otherwise require one or more nuclear power plants

towards high energy & high power

Energy Recovery demonstrated

great achievements on all aspects and large research infrastructures based on Energy Recovery systems have been operated successfully

Energy Recovery Linacs (ERL): reaching higher luminosities with less power requirements

Upcoming facilities for Energy Recovery Linac R&D

(3-turns)

multi-turn ERL based on SRF technology

PERLE @ IJCLab

international collaboration
 all ERL aspects to demonstrate readiness
 design, build and operation this decade
 for e⁺e⁻ and ep/eA HEP collider applications

With timely capital investments, PERLE will demonstrate high-power ERL this decade

o funded with iSAS (more in back-up)

PERLE – Powerful Energy Recovery Linac for Experiments [CDR: J.Phys.G 45 (2018) 6, 065003]

Upcoming facilities for Energy Recovery Linac R&D

(3-turns)

multi-turn ERL based on SRF technology

PERLE @ IJCLab

- international collaboration
 all ERL aspects to demonstrate readiness
 design, build and operation this decade
 for e⁺e⁻ and ep/eA HEP collider applications
- With timely capital investments, PERLE will demonstrate high-power ERL

this decade

PERLE – Powerful Energy Recovery Linac for Experiments [CDR: J.Phys.G 45 (2018) 6, 065003]

 funded with iSAS (more in back-up)
 opportunity to include and test several additional energy saving technologies

opportunity to test FCC-ee
 cryomodules in a real high-power
 beam (801.58 MHz cavities) 22

Potential impact of ERL technology demonstrate multi-turn high-power ERL 2020'ies iSAS PERLE bERLinPro high-power ERL demonstrated

Potential impact of ERL technology

demonstrated

ERL-based ep/eA colliders at CERN

high-energy & high-luminosity electron-proton collions

Future flagship at the energy & precision frontier

Current flagship (27km) impressive program up to ~2040 **Future Circular Collider** (FCC) big sister future ambition (100km), beyond 2040 *attractive combination of precision & energy frontier*

The LHeC program

The FCC-eh program

High-energy ep/eA physics with the LHeC and FCC-eh

Renewed mandate (Oct 2022): "CERN continues to support studies for the LHeC and the FCC-eh as potential options for the future and to provide input to the next Update of the European Strategy for Particle Physics. The study is to further develop the scientific potential and possible technical realization of an ep/eA collider and the associated detectors at CERN, with emphasis on FCC."

Coordination Panel members (May 2023): Nestor Armesto, Maarten Boonekamp, Oliver Brüning, Daniel Britzger, Jorgen D'Hondt (spokesperson), Monica D'Onofrio, Claire Gwenlan, Uta Klein, Paul Newman, Yannis Papaphilippou, Christian Schwanenberger, Yuji Yamazaki.

International Advisory Committee members (May 2023): Phil Allport, Diego Bettoni, Frederick Bordry (chair), Abhay Deshpande, Rohini Godbole, Beate Heinemann, Karl Jakobs, Young-Kee Kim, Max Klein, Eric Laenen, Jean-Philippe Lansberg, Tadeusz Lesiak, Dave Newbold, Vladimir Shiltsev, Johanna Stachel, Achille Stocchi.

the physics impact

Collision energy above the threshold for EW/Higgs/Top

Log(ep→HX)

DIS Higgs Production Cross Section

The real game change between HERA and LHC/FCC

compared to proton collisions, these are reasonably clean Higgs events with much less backgrounds

at these energies and luminosities, interactions with all SM particles can be measured precisely

Some physics highlights of the LHeC (ep/eA@LHC)

EW physics

- $\circ \Delta m_W$ down to 2 MeV (today at ~10 MeV)
- $\circ \Delta sin^2 \theta_W^{eff}$ to 0.00015 (same as LEP)

Top quark physics

- \circ |V_{tb}| precision better than 1% (today ~5%)
- \circ top quark FCNC and γ , W, Z couplings

DIS scattering cross sections

PDFs extended in (Q²,x) by orders of magnitude

Strong interaction physics

- $\circ \alpha_s$ precision of 0.2%
- o low-x: a new discovery frontier

The Large Hadron-Electron Collider at the HL-LHC, J. Phys. G 48 (2021) 110501, 364p (updated CDR)

Some physics highlights of the LHeC (ep/eA@LHC)

updated CDR published in J.Phys.G 48 (2021) 11, 110501

- EW/Higgs/top physics: improvement from HL-LHC \rightarrow LHeC similar to LHC \rightarrow HL-LHC
- Joint ep/pp interaction region with the same detector: correlate results and reach the ultimate precision, e.g. $\Delta m_W \sim 1$ MeV might be within reach *Eur.Phys.J.C* 82 (2022) 1, 40
- In addition, unique potential with LHeC/FCC-eh to search for new physics phenomena, e.g. what if features appear in the interactions between leptons and quarks

The LHeC is a general-purpose experiment i.e. H/EW/top/QCD/search factory

Empowering the FCC-hh program with the FCC-eh

Empowering the FCC-hh program with the FCC-eh

(Higgs coupling strength modifier parameters κ_i – assuming no BSM particles in Higgs boson decay) (expected relative precision)

	kappa-0-HL	HL+FCC-ee ₂₄₀	HL+FCC-ee	HL+FCC-ee (4 IP)	HL+FCC-ee/hh	HL+FCC-eh/hh	HL+FCC-hh	HL+FCC-ee/eh/hh	
	$\kappa_W[\%]$	0.86	0.38	0.23	0.27	0.17	0.39	0.14	
	$\kappa_{Z}[\%]$	0.15	0.14	0.094	0.13	0.27	0.63	0.12	
	$\kappa_{g}[\%]$	1.1	0.88	0.59	0.55	0.56	0.74	0.46	
,	$\kappa_{\gamma}[\%]$	1.3	1.2	1.1	0.29	0.32	0.56	0.28	
	$\kappa_{Z\gamma}[\%]$	10.	10.	10.	0.7	0.71	0.89	0.68	
	$\kappa_c[\%]$	1.5	1.3	0.88	1.2	1.2	-	0.94	
	κ_t [%]	3.1	3.1	3.1	0.95	0.95	0.99	0.95	
	$\kappa_b[\%]$	0.94	0.59	0.44	0.5	0.52	0.99	0.41	
	$\kappa_{\mu}[\%]$	4.	3.9	3.3	0.41	0.45	0.68	0.41	
	$\kappa_{ au}[\%]$	0.9	0.61	0.39	0.49	0.63	0.9	0.42	
	$\Gamma_H[\%]$	1.6	0.87	0.55	0.67	0.61	1.3	0.44	
		$\overline{}$					$\overline{}$		
	only FCC-ee@240GeV					only FCC-hh			

only FCC-hh

(Higgs coupling strength modifier parameters κ_i – assuming no BSM particles in Higgs boson decay) (expected relative precision)

 kappa-0-HL	HL+FCC-ee ₂₄₀	HL+FCC-ee	HL+FCC-ee (4 IP)	HL+FCC-ee/hh	HL+FCC-eh/hh	HL+FCC-hh	HL+FCC-ee/eh/hh
$\kappa_W[\%]$	0.86	0.38	0.23	0.27	0.17	0.39	0.14
$\kappa_Z[\%]$	0.15	0.14	0.094	0.13	0.27	0.63	0.12
$\kappa_{g}[\%]$	1.1	0.88	0.59	0.55	0.56	0.74	0.46
$\kappa_{\gamma}[\%]$	1.3	1.2	1.1	0.29	0.32	0.56	0.28
$\kappa_{Z\gamma}[\%]$	10.	10.	10.	0.7	0.71	0.89	0.68
κ_c [%]	1.5	1.3	0.88	1.2	1.2	-	0.94
κ_t [%]	3.1	3.1	3.1	0.95	0.95	0.99	0.95
κ_b [%]	0.94	0.59	0.44	0.5	0.52	0.99	0.41
$\kappa_{\mu}[\%]$	4.	3.9	3.3	0.41	0.45	0.68	0.41
$\kappa_{ au}[\%]$	0.9	0.61	0.39	0.49	0.63	0.9	0.42
$\Gamma_H[\%]$	1.6	0.87	0.55	0.67	0.61	1.3	0.44
FCC-ee pi			rospect	FCC-hh/	eh prospect		
0.01		10001				and FCC bl	

only FCC-ee@240GeV

only FCC-hh

(Higgs coupling strength modifier parameters κ_i – assuming no BSM particles in Higgs boson decay) (expected relative precision)

	kappa-0-HL	HL+FCC-ee ₂₄₀	HL+FCC-ee	HL+FCC-ee (4 IP)	HL+FCC-ee/hh	HL+FCC-eh/hh	HL+FCC-hh	HL+FCC-ee/eh/hh		
Γ	к _W [%]	0.86	0.38	0.23	0.27	0.17	0.39	0.14		
	κ _Z [%]	0.15	0.14	0.094	0.13	0.27	0.63	0.12		
	$\kappa_{g}[\%]$	1.1	0.88	0.59	0.55	0.56	0.74	0.46		
·	$\kappa_{\gamma}[\%]$	1.3	1.2	1.1	0.29	0.32	0.56	0.28		
	$\kappa_{Z\gamma}[\%]$	10.	10.	10.	0.7	0.71	0.89	0.68		
	$\kappa_c[\%]$	1.5	1.3	0.88	1.2	1.2	-	0.94		
	κ_t [%]	3.1	3.1	3.1	0.95	0.95	0.99	0.95		
	$\kappa_b[\%]$	0.94	0.59	0.44	0.5	0.52	0.99	0.41		
	$\kappa_{\mu}[\%]$	4.	3.9	3.3	0.41	0.45	0.68	0.41		
	$\kappa_{ au}[\%]$	0.9	0.61	0.39	0.49	0.63	0.9	0.42		
	$\Gamma_H[\%]$	1.6	0.87	0.55	0.67	0.61	1.3	0.44		
	FCC-ee p			rospect FCC-hh/eh prospect				ALL COMBINED		
	only FCC-ee@240GeV					only FCC-hh				

Ultimate Higgs Factory = {ee + eh + hh}

139

(2020)

JHEP 01

J. de Blas et al.,

Ultimate Higgs Factory = {ee + eh + hh}

While fostering continuous developments in the realm of ep/eA physics, a coherent focus on <mark>five new physics and technology themes</mark> is proposed to provide impactful information at the time of the next European strategy discussions.

more at the kick-off meeting of Oct 31, 2023: <u>https://indico.cern.ch/event/1335332/</u> including self-registration to mailing lists

NS

2025

input to ESPP

2024

proton and nuclear structure from EIC and HERA to LHeC and FCC-eh novel QCD with high-energy DIS physics: what do we discover when breaking protons and nuclear matter in smaller pieces

NS

2023

general-purpose high-energy physics program: precision physics and searches enabling direct discoveries and measurements in EW, Higgs and top physics with high-energy DIS collisions

ep/eA-physics empowering pp/pA/AA-physics (LHC and FCC) improving the ATLAS, CMS, LHCb and ALICE discovery potential with results from a high-energy DIS physics program

developing a general-purpose ep/eA detector for LHeC and FCC-eh critical detector R&D (DRD collaborations), integrate in the FCC framework, one detector for joint ep/pp/eA/pA/AA physics

developing a sustainable LHeC and FCC-eh collider program design the interaction region, power and cost, coherent collider parameters & run plan, beam optimization, ...

- typically 2-3 conveners per theme
- annual ep/eA workshops (WS)
- final thematic workshop with closing reports to inform the upcoming Strategy process with impactful information (TWS)
- inform the community with regular ep/eA Newsletters
- everybody is welcome to join

NS

2025

input to ESPP

2024

proton and nuclear structure from EIC and HERA to LHeC and FCC-eh novel QCD with high-energy DIS physics: what do we discover when breaking protons and nuclear matter in smaller pieces general-purpose high-energy physics program: precision physics and searches enabling direct discoveries and measurements in EW, Higgs and top physics with high-energy DIS collisions ep/eA-physics empowering pp/pA/AA-physics (LHC and FCC) improving the ATLAS, CMS, LHCb and ALICE discovery potential with results from a high-energy DIS physics program developing a general-purpose ep/eA detector for LHeC and FCC-eh critical detector R&D (DRD collaborations), integrate in the FCC framework, one detector for joint ep/pp/eA/pA/AA physics developing a sustainable LHeC and FCC-eh collider program very impactfull UK leadership not to forget the leadership of Max Klein design the interaction region, power and cost, coherent collider parameters & run plan, beam ontig **Coordination**

NS

2023

C. Gwenlan, U. Klein, P. Newman, Y. Papaphilippou, C. Schwanenberger, Y. Yamazaki

typically 2-3 conveners per theme

- annual ep/eA workshops (WS)
- final thematic workshop with closing reports to inform the upcoming Strategy process with impactful information (TWS)
- inform the community with regular ep/eA Newsletters
- everybody is welcome to join

Potential impact of ERL technology

High-energy ep/eA physics with the LHeC and FCC-eh

- ERL is an <u>enabling technology for our most prominent future ep/eA and e⁺e⁻</u> <u>colliders</u>, delivering breakthrough performances on an interesting timeline
- <u>New impactful goals</u> have been developed for the ep/eA study with a timeline to inform the next update of the European Strategy for Particle Physics
- The ep/eA collider programs at CERN address not only our most prominent physics ambitions, but also important sustainability and financial aspects

High-energy ep/eA physics with the LHeC and FCC-eh

- ERL is an <u>enabling technology for our most prominent future ep/eA and e⁺e⁻</u> <u>colliders</u>, delivering breakthrough performances on an interesting timeline
- <u>New impactful goals</u> have been developed for the ep/eA study with a timeline to inform the next update of the European Strategy for Particle Physics
- The ep/eA collider programs at CERN address not only our most prominent physics ambitions, but also important sustainability and financial aspects
- The potential physics and technology impact of ep/eA colliders at CERN is so appealing that we must foster this path for the future of the field

Thank you for your attention! Jorgen.DHondt@vub.be

Sustainable Accelerating Systems

Sustainable Accelerating Systems

Sustainable Accelerating Sust

iSAS is now an approved Horizon Europe project

Grant Agreement has been signed this month – project starts on March 1, 2024

Spread over 4 years: ~1000 person-months of researchers and ~12.6M EUR

(of which 5M EUR was requested to Horizon Europe)

+ industrial companies: ACS Accelerators and Cryogenic Systems (France), RI Research Instruments GmbH (Germany), Cryoelectra GmbH (Germany), TFE Thin Film equipment srl (Italy), Zanon Research (Italy), EuclidTechLab (USA)

Potential impact of ERL technology

Potential impact of ERL technology

Accelerator R&D for Particle Physics Energy Recovery Linacs

https://indico.ijclab.in2p3.fr/event/9548/

From HERA onwards to high-energy proton beams

	HERA	EIC	LHeC	FCC-eh
Host site	DESY	BNL	CERN	CERN
Layout	ring-ring	ring-ring	ERL linac-ring	ERL linac-ring
Circumference hadron/lepton (km)	6.3/6.3	3.8/3.8	26.7/[5.3–8.9]	100/[5.3–8.9]
Number of IRs/IPs	4/2	6/1–2	1	1
Max. CM energy (TeV)	0.32	0.14	1.2	3.5
Crossing angle (mrad)	0	22	0	0
Max. peak luminosity (cm ^{-2} s ^{-1})	5 × 10 ³¹	1 × 10 ³⁴	2.3×10^{34}	1.5 × 10 ³⁴
Lepton	Electrons, positrons	Electrons	Electrons	Electrons
	polarized	polarized	unpolarized	unpolarized
Max. average current (A)	0.058	2.5	0.02	0.02
Max. SR power (MW)	7.2	10	45	45
Main RF frequency (MHz)	500	591	802	802
No. main RF cavities/cryomodules	28	17–18/9–18	448/112	448/112
No. crab RF cavities	-	2	-	-
Hadron	Protons	Protons	Protons	Protons
	unpolarized	polarized	unpolarized	unpolarized
Max. average current (A)	0.163	1.0	1.1	1.1
Main RF frequency (MHz)	208	591	400	400
No. crab RF cavities/cryomodules	_	12/6	8/4	8/4
No. ERL RF cavities	-	13	-	-