Pixel tracker for the Mu 3e experiment

Ashley McDougall on behalf of the Mu3e collaboration

Silicon tracking and vertex detector technologies workshop Queen Mary, University of London 07.11.23

Probing the Standard Model with Mu3e:

Aim to observe the process
$$\mu^+ \rightarrow e^+ e^- e^+$$

Lepton flavour violating decay in the SM

- Charged LFV decays forbidden at tree level (Induced through lepton mixing at higher orders)
- Predicted BR($\mu \rightarrow eee$) ~ 10^{-55} [arXiv]

BSM models involving LFV could significantly enhance the predicted BR (e.g. triple Higgs doublet model)

Anticipated sensitivity $BR(\mu \rightarrow eee) \sim 10^{-16}$

• Best current upper limit: $BR(\mu \rightarrow eee) < 10^{-12}$ @ 90% C.L. from **SINDRUM (1988)**

Complementary to other similar searches:

- Direct LHC searches
- Indirect searches of tau and other muon decays (Mu2e, MEG-II)

 10^{-16}

 10^{-17}

-0.2

-0.1

 $\stackrel{0}{U_{e3}}$

0.1

0.2

Experimental considerations:

Signal topology: three electron tracks

- Common vertex
- Time coincidence
- Energy sum = m_{μ}

Main backgrounds:

- - $BR(\mu$

 Sensitivity dependent on reduction of dominant processes which resemble signal

• Internal conversion (small energy carried away by neutrinos):

$$\rightarrow eeevv$$
) = (3.4 ± 0.4) × 10⁻⁵

• Accidental: processes appearing to have 3*e* tracks.

Can occur via: Misreconstruction, γ conversion, Bhabha scattering

Detector requirements:

Precise momentum resolution (material budget important!) Good timing and vertex resolution (to identify the signal) Large acceptance

Mu3e location and collaboration:

Located at the Paul Scherrer Institute (PSI) near Zurich, CH

Collaboration $\mathcal{O}(80 \text{ people})$ from 11 institutes (Germany, UK, Switzerland):

ETHzürich

UNIVERSITÉ DE GENEVE

Universität Zürich^{UZH}

A. McDougall

- Swiss national accelerator complex
- Mu3e to be located in experimental hall along lowenergy muon beam line
- Provides muon rates up to $\sim 1 \cdot 10^8 \, \text{Hz}$

Expected to start taking physics data in 2025:

• 290 days *minimum* running time required to achieve target sensitivity

F F. //Q018 -7.

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

The Mu3e detector overview:

Make muons

• πE5 beam line @ PSI

Hollow double cone stopping target:

- Aluminised Mylar foil 70-80µm thickness, 100mm length, 19mm radius.
- ~ 95.5 % of muons reaching the target are stopped
- Very similar to that used by <u>SINDRUM</u>

20cm	Recurl pixe			
	(Scir	ntilla	ate
			-	
			-	

Tracking achieved with:

- Homogeneous solenoidal magnetic field B = 1T
- Four-layer silicon pixel detector (+ re-curl)
- Scintillating fibres: differentiate electrons and positrons
- Scintillating tiles: further improve timing resolution

Detector requirements:

Require excellent momentum (energy) resolution to reduce $\mu \rightarrow eeevv$ background

- Small pixel sizes = hit resolution effects can be neglected.
- Resolution solely determined by multiple scattering.

A. McDougall

In such a regime: track momentum resolution predominantly depends on number of detector layers & thickness.

• 2 flow channels: between layers + around outer layer

Scintillating fibres and tiles:

Scintillating fibres: surround inner pixel layers in central region

- Constructed of scintillating photo-multiplier tubes (SiPMs)
- 12 fibre ribbons, 30cm long, arranged in 3 staggered layers
- Fibres 250 µm thin
- Material budget < 2% X_0
- Measured time resolution $\sim 250 \text{ ps}$

• Common read out: custom MuTRIG ASIC (50ps time-to-digital converter)

A. McDougall

Scintillating tiles: 6mm x 6mm x 5mm tiles with SIPMs in re-curl region

- \sim 6000 channels
- Up to 60 kHz/channel
- Measured single channel time resolution < 50ps
- material budget

Pixel sensor technology: MuPix11

Custom **MuPix HV-MAPS** sensors: designed to be fast, efficient, thin

- Monolithic HV-CMOS: produced by TSI (Bosch) using 180 nm technology
- Fast charge collection via drift

- 80 x 80 μ m² pixels (= 256 x 250 pixels total)
- Operating voltage = 1.8 V
- ~ 250 mW/cm² power consumption
- < 15 ns time resolution (measured 5.7 ns)
- Tunable threshold for each pixel
- Integrated analog and digital readout
- Up to 3 configurable data lines: each at a rate of 1.25 GBit/s
- Data driven readout hits sent out as packets

A. McDougall

Active area = $20 \times 20 \text{ mm}^2$

Periphery

Inner pixel layers:

A. McDougall

Fabrication procedure for inner pixel layers:

Test modules have been produced to conduct cooling studies, and practise assembly procedure

Single chips are tested using QC test stand with needle socket

A. McDougall

Glue and chips place manually on ladder • Some Origami skills required

Simplified PCB-based demonstrator:

First half ladder inserted into testbeam @ PSI 2 weeks ago

 \rightarrow operated in realistic beam conditions!

Outer pixel layers:

70µm thick pixel sensors

material providing structural

A. McDougall

Fabrication procedure for outer pixel layers:

Significantly more, and larger, ladders required for outer pixels versus inner system. Exact ladder yield not yet known.

- Total = 912 chips (central) + 2x912 chips (re-curl) versus 96 for vertex layers
- Anticipate $\mathcal{O}(60\%)$ yield for pixel chips passing QC, further $\mathcal{O}(60\%)$ for ladder QC.
 - Need to test 3x2000 chips in total!

Automise ladder building procedure as much as possible:

Robotic gantry used for placement of chips on vacuumed ladder tool

A. McDougall

Glue-dispensing robot

• Allows for precise placement (15 μ m) and size of glue deposits

Outer pixel layer production status:

Production tooling for Layer 4 is almost complete, tooling for Layer 3 to commence shortly after.

• Expected production rate is $\mathcal{O}(1.5 \text{ ladders / day})$, to commence March 2024

Prototype outer pixel layers have been fabricated.

A. McDougall

Layer 3 to commence shortly after. nence March 2024

Interposer flex bending tool Align, glue, TAB bond interposer and ladder flexes Ring frame to hold ladder during production

Chip chuck: align MuPix 11 array on robot and glue chips to ladder Flex chuck for MuPix11 TAB binding, and V-fold gluing

4

Mechanical stiffness of local support structure:

V-folds initially proposed to be made from kapton

- **Difficult to fabricate**: **very flimsy** so if glue does not cover all edges sufficiently, risk peeling off ladder
 - Transportation issues?
- Enough structural integrity for 18 chip ladders, but not more (important for the future)

Alternate proposal: make **carbon-fibre u-folds**

- Slightly lower mass than kapton
- **U-folds**: rounded edge v-folds
 - Larger radius bend in carbon-fibre gives them greater mechanical stiffness
- Much easier to manufacture and handle (transport)
- Potential concerns about electrical cross-talk

A. McDougall

Carbon-fibre ladder Can hold 3 coins!

Kapton ladde

Visibly sags under it's own weight

Each object with steel chips weighs \sim 5g, corresponding to \approx 2 grams for Si chips!

Carbon-fibre ladders:

Test ladders made so far from 60µm thick uni-directional carbon-fibre, with joined u-folds:

• ATLAS pre-preg: Mitsubishi K13C2U and Cyanate Ester EX1515 matrix

Future:

- 30µm also available: tow spread Tairyfil TC33 fibre and SK Chemicals K51 matrix
- Ultimately 15µm thickness: via informal contacts with Renault F1 thanks to our engineering team
- Likely combine with thin kapton backing (to ensure no electrical contact between ladder halves)

- Production of carbon-fibre prototype ladders in progress: strong collaboration with mechanical workshop @ Oxford
- on both

A. McDougall

Construction on-going for **test ladder**

objects of both kapton and carbon-fibre

• Perform mechanical and electrical tests

Results from thermal cycling ladder prototypes:

First test of **electrical connectivity**: using ladders made with silicon heaters

- LEDs soldered to monitor in real-time the connectivity of the 4 sense (green) + power (red) lines per chip
- Thermal cycle between expected operational temperature range ($0 \rightarrow 60^{\circ}$ C) to check for failures

Thermally insulated box

A. McDougall

Thermal cycling system, LEDs remain outside

50 cycles completed:

• 2 failures seen (initially poor connections)

Now extended $\Delta T = -20 \rightarrow 60^{\circ}C$

• Same test for kapton v-fold ladder in progress

Quality control for silicon pixel chips:

Use semi-automatic probe station @ Oxford to conduct QC tests on all pixel chips required for construction of outer pixel system.

Single-chip testing: establish QC procedure

A. McDougall

Wafer testing: required for ladder production

- Chips held with vacuum individually
- Raised edges allow for chip alignment
- Use pattern recognition to identify individual chips and low to pre-set height to make needle contact
 - Conduct QC tests

Coming soon:

Mu3e: search for cLFV - aiming to measure the BR($\mu \rightarrow eee$) with unprecedented sensitivity!

- layers, to detect electrons and positrons
- MuPix chip development at the forefront of HV-CMOS R&D

Detector construction in progress:

• Expected full Mu3e detector integration + commissioning to take place mid 2024

Expected to start taking physics data in 2025 (Phase I):

- Beam available until \sim end 2026 —> shutdown (—> Phase II)
- Plans to upgrade existing muon beam to increase intensity
- High intensity muon beam (HiMB) project is under discussion
 - Would provide muon intensities $> 10^9 \,\mu$ /s
 - Ultimate experimental sensitivity limited by this rate

Stay tuned ... !

[ashley.mcdougall@physics.ox.ac.uk] [Mu3e collaboration] Oxford silicon detector group

A. McDougall

• Ultra light-weight detector using custom designed HV-MAPS pixel sensors (MuPix11) for the inner and outer pixel

