CMS silicon detector upgrade

Imperial College London

Giacomo Fedi

on behalf of the CMS Tracker group

Current and future tracking and vertexing detectors 2023 - QMUL London

8 November 23

HL-LHC (Phase2) schedule

Specs

- High Luminosity upgrade after LS3
- Peak Luminosity ~7.5x10³⁴ cm⁻¹s⁻¹
- Expected Pile-up ~200 (current one designed for 20)
- Higher rates and radiation dose than Run3
- Final integrated luminosity 3-4 ab⁻¹
- 10x more radiation (up to 1.2 Grad, fluence of 2.3 x 10¹⁶ n_{eq}/cm²)

Phase2 CMS detector overview

L1 Trigger HLT/DAQ

- Tracks in L1-Trigger at 40 MHz
- PFlow selection 750 kHz L1 output
- HLT output 7.5 kHz
- Latency within 12.5 µs
- 40 MHz data scouting

Endcap Calorimeter (HGCAL)

- 3D showers and precise timing
- Si, Scint+SiPM in Pb/W-SS

Barrel Calorimeter

- ECAL crystal granularity readout at 40 MHz
- with precise timing for e/γ at 30 GeV
- ECAL and HCAL new Back-End boards

MIP Timing Detector

- Barrel layer: Crystals + SiPMs
- Endcap layer: Low Gain Avalanche Diodes

Tracker

- Increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to $\eta \simeq 4$

Muon Systems

- DT & CSC new FE/BE readout
- RPC back-end electronics
- New GEM/RPC 1.6 < η < 2.4
- Extended coverage to $\eta \approx 3$

Motivations

Physics motivated the general upgrade

 Collect more statistics with better performance to improve measurements and search for new physics
 ^{3 ab⁻¹(14 TeV)}

Why do we need a new Tracker?

- Current Tracker sub-detector
 - Is **ageing** and cannot sustain the future radiation doses
 - Low performance/data taking inefficiencies
 - **Designed** for an average **pile-up of 20** need to work with pipe-up 200
 - Higher occupancy, degraded performance (e.g. failure of pattern recognition)

4

CERN-LPCC-2018-06

5.7

5.8

M(μμ) [GeV]

5.9

5.5

5.6

toy events

full PDF

B°→u⁺u⁻

 $B^{0} \rightarrow \mu^{+}\mu^{-}$

..... combinatorial bkg semileptonic bkg

B→ hµ⁺µ⁻ bkg
---- peaking bkg

Phase2 Tracker

General increase of granularity and radiation hardness

Some key features

- Tilted geometry of part of the tracker
- Reduced front-end data rate via in-situ trigger data filtering (pt modules)
- Reconstruction of the charged particle trajectory at trigger Level 1 (hardware trigger)

Material budget

Improvements

- Fewer layers
- Lighter materials
- Optimised service routing
- Tilted geometry
- CO2 cooling

Inner Tracker

Inner Tracker

Layout

- TBPX : Tracker Barrel PiXel
- TFPX : Tracker Forward PiXel
- TEPX : Tracker Endcap PiXel
- Extended acceptance $|\eta| < 4$ (currently 3)
- Innermost layer at 2.75 cm from beam line (from 2.9 cm)
- Designed to be easily replaceable as it will not last up to end of Phase2 (radiation damages)

Inner tracker modules

Modules

- Two types of Pixel Modules: 1x2 and 2x2 readout chip
- Read Out Chip (ROC) bump bonded on sensor
- Serial powering scheme with up to 11 modules per chain

Sensors

- 25x100µm² pixel cells with 150µm active thickness
- Two different technologies will be adopted
 - n-in-p planar sensors: hit efficiency >99% after 2x10¹⁶ n_{eq}/cm²
 - **3D pixel sensors** on first layer in barrel
 - Less power consumption
 - Stable hit resolution up to $10^{16} n_{eq}/cm^2$

Inner tracker read-out

CERN RD53 ASIC project: 25x100µm² pixel cells with 150µm active thickness

- Based on CMOS 65nm technology
- Radiation tolerant up to 1 Grad
- Low power consumption < 1 W/cm²
- Serial powering via on-chip shunt-LDO regulators

CMS version of RD53 ASIC (C-ROC)

- Full size ASIC: 432x336 channels
- First prototypes modules built with CROC
- Production chip submitted last October

Inner Tracker upgrade in Phase2

Some parts of the Inner Tracker will not survive the entire HL-LHC program

- Discussion has been started to design the replacements
- Possible target for replacement is Run5 of Phase2
- Possible addition of timing layers in the end-cap

Preliminary studies

- Assume a pixel reduction size of a factor 0.6
- Sensor thickness 60 µm
- Result: improvements in pixel size brings minimal benefit to tracking resolution as it is dominated by material budget effects

Under evaluation

- Use of LGAD sensors for timing modules
- Cooling distribution and cooling contact embedded in mechanical structures

Abbaneo's slides

Outer Tracker

Outer Tracker

Features

- Two different type of technology: micro-strips and macro-pixels
- Tilted barrel geometry: works better with pt modules, reduction of modules-> decrease of material budget

Pt modules

Pt modules

- Doublet sensors with common electronics to correlate hits and form stubs for trigger
- Distance between sensors give track pT lower cut
- Allows control of trigger data rates (reduction of a factor 10) and hugely improved pT resolution
- Different sensor spacing for different detector region

Outer Tracker Modules

Two module types

- 2S modules of 10x10 cm²
 - Two different spacing : 1.8mm and 4mm
 - Two micro strip sensors with 5cm x 90µm strips
- PS modules 5x10 cm²
 - Three different spacing : 1.6mm, 2.6mm, and 4mm
 - One strip sensor: 2.5cm x 100µm strips
 - One macro pixel sensor : 1.5mm x 100µm pixels

Prototypes already used for testing since 2022, pre-production modules by the end of 2023

Outer Tracker read-out

2S Module ASIC (130nm)

- CMS Binary Chip (CBC) for readout and stub finding for L1T
- CBC reads out both sensors
- 254 channels per chip

PS Module ASICs (65nm)

- Macro-Pixel ASIC (MPA) and Short-strip ASIC (SSA) for readout of sensors
- Stub finding performed by MPA
 - SSA sends cluster and L1 information to MPA to enable match in space and time

Common ASIC (65nm)

- CIC concentrator chip
- Receives L1 information and readout data

Performance: tracking resolution

Better momentum and impact parameter resolution

- High tracking efficiency and low pile-up dependence (deeps are transitions in inner tracker)
- Fake rate below 2% at PU 140, small defence on pile-up

Back-end

Track Trigger

Track reconstruction at trigger Level 1 in less than 4 μs

- Data from outer tracker in lηl<2.4 are sent to DTC, which sends the data to TFP with a time multiplexing of x18
- Each TFP board receives an event every 450 ns

Track Trigger Algorithm

Each event could have 10k stubs and O(100) reconstructed tracks \rightarrow harsh combinatoric problem

Algorithm under development: Tracklet + Kalman filter

- 1. Pattern based on tracklet seeding
- 2. Kalman filter for identify best stub candidates and track parameters
- 3. Boost decision tree to evaluate track quality

Track Trigger Algorithm Firmware

Track Fitter Performance

High efficiency across n

1 mm z₀ resolution for tracks

Access to hadronic channels:

Vertical slice: test beam

Test beam with 160GeV muon beam

- Multiple session of tests carried out in 2022 and 2023
- Latest beam test done with 12 2S modules
- Vertical slice: from front-end modules to the data carrier board (DTC)
- 40MHz readout of stubs

Test results

- 5 trillion stubs collected
- Stable for many hours
- **Module synchronisation** (within 1ns) and efficiency plots
- Data analysis is ongoing

Beam spot: x vs y

Conclusions

- The Tracker sub-detector of CMS will be replaced before the Phase2 starts
 - Outer Tracker made of strip and pixel/strip sensors
 - Inner Tracker made of pixel sensors
 - Some parts need to be replaced during Phase2, discussion on how to do it is ongoing
- Tracking at Level 1 will be implemented for the first time in CMS
 - Great benefit in term of trigger threshold selection and pile-up rejection
- Prototypes of modules and back-end boards have been successfully tested standalone and in slice tests
- In 2024 we start the production of the final modules and back-end boards looking forward the start of Phase2 in 2029

Additional slides