Carbon Models and tools -- some preliminary discussion

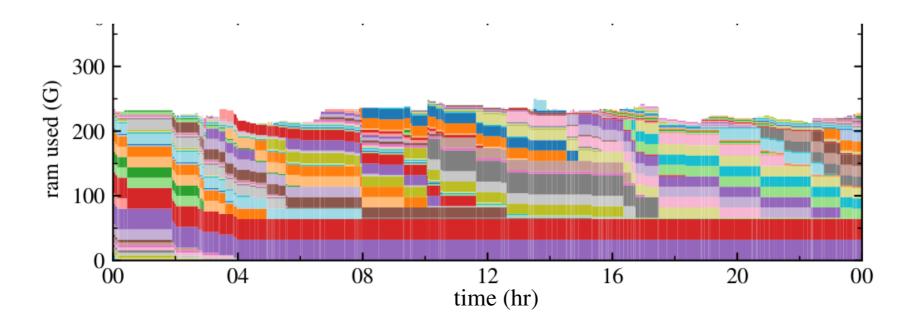
Daohai Li (QMUL) Alex Owen (QMUL) Jon Hays (QMUL) Alex Dibbo (STFC)

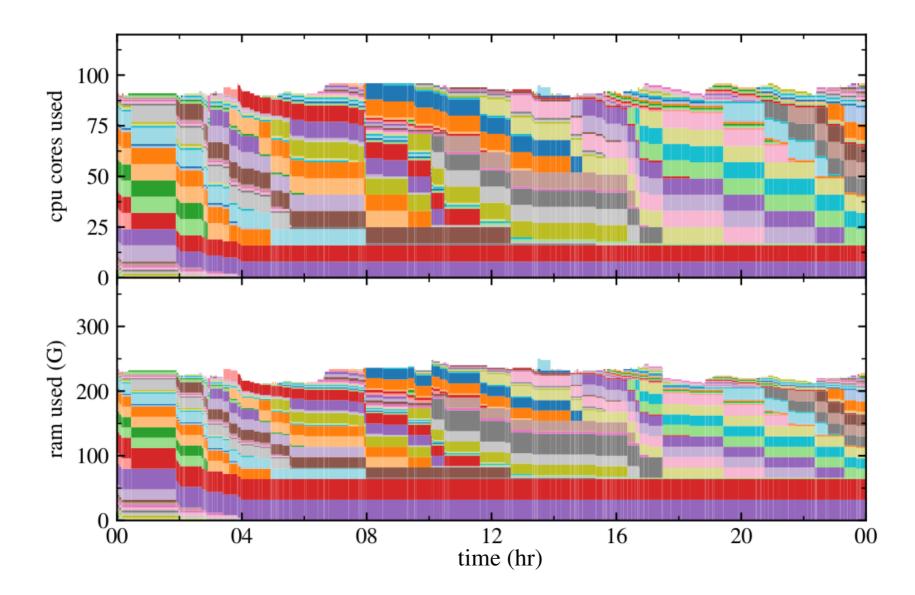
Outline

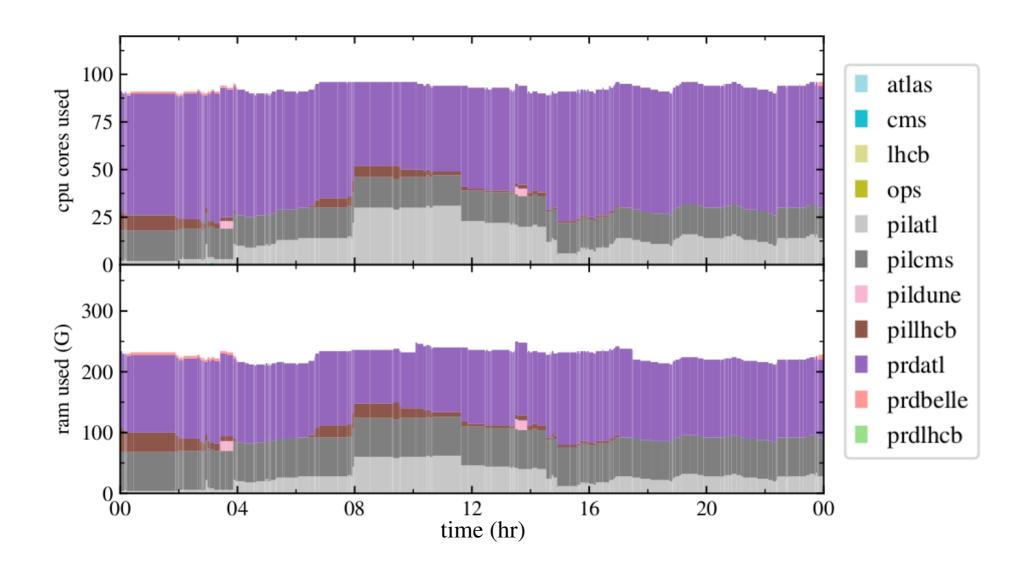
- Slurm/Carbon accounting on the GridPP facility at QMUL
- Dell server CO2 emission

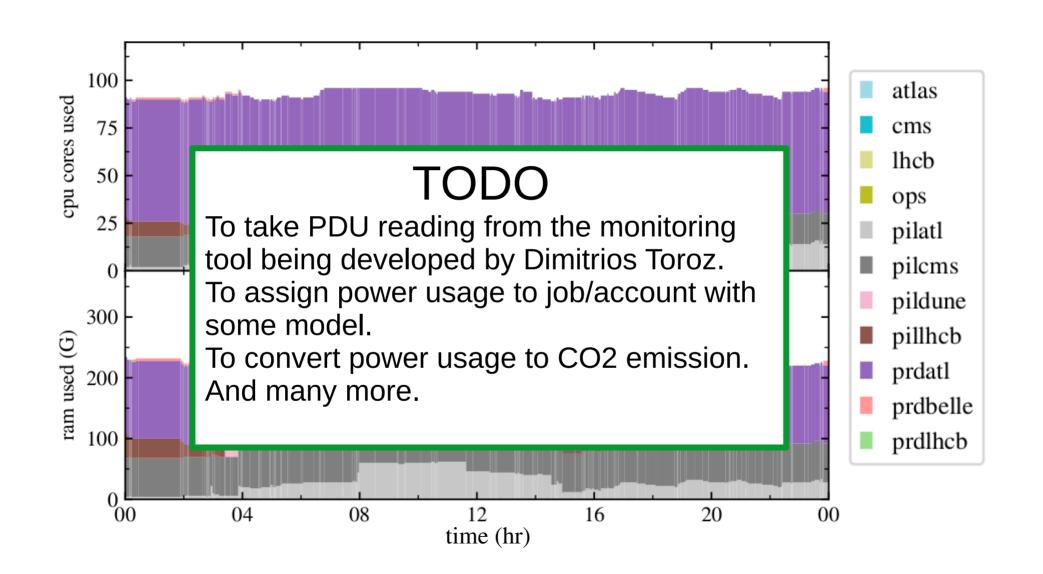
GridPP facility at QMUL

GridPP facility at QMUL


- Compute node: Dell R630/Lenovo SR570 servers (mostly)
 - 96 threads (2*Intel Gold 6248R/6252)
 - 384 GB of RAM
 - Slurm workload manager


GridPP facility at QMUL


- Compute node: Dell R630/Lenovo SR570 servers (mostly)
 - 96 threads (2*Intel Gold 6248R/6252)
 - 384 GB of RAM
 - Slurm workload manager
- Job accounting (sacct)
 - Number of CPU assigned
 - RAM assigned
 - Start time
 - End time
 - CPU time

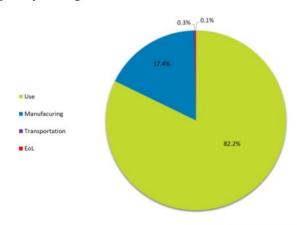

Sample sacct query result

AllocTRES	Start 🔺	End	CPUTime	JobID	Account
billing=1,cpu=1,mem=4G,node=1	2023-12-11T08:01:57	2023-12-12T00:03:18	16:01:21	11865460	pillhcb
billing=1,cpu=1,mem=4G,node=1	2023-12-11T09:19:03	2023-12-12T02:50:30	17:31:27	11866361	pillhcb
billing=1,cpu=1,mem=4G,node=1	2023-12-11T09:30:43	2023-12-12T02:35:10	17:04:27	11866484	pillhcb
billing=1,cpu=1,mem=4G,node=1	2023-12-11T09:30:44	2023-12-12T03:34:59	18:04:15	11866508	pillhcb
billing=8,cpu=8,mem=32000M,node=1	2023-12-11T09:41:34	2023-12-13T09:06:13	15-19:17:12	11866748	pilcms
billing=1,cpu=1,mem=4G,node=1	2023-12-11T09:56:13	2023-12-12T07:45:16	21:49:03	11866723	pillhcb
billing=1,cpu=1,mem=4G,node=1	2023-12-11T10:27:53	2023-12-12T04:21:56	17:54:03	11866986	pillhcb
billing=1,cpu=1,mem=4G,node=1	2023-12-11T11:14:49	2023-12-12T02:16:52	15:02:03	11867323	pillhcb
billing=8,cpu=8,mem=32000M,node=1	2023-12-11T11:25:14	2023-12-13T05:05:45	13-21:24:08	11867394	pilcms
billing=1,cpu=1,mem=4G,node=1	2023-12-11T11:30:41	2023-12-12T04:06:22	16:35:41	11867337	pillhcb
billing=1,cpu=1,mem=4G,node=1	2023-12-11T11:38:56	2023-12-12T03:36:23	15:57:27	11867357	pillhcb
billing=8,cpu=8,mem=32000M,node=1	2023-12-11T13:12:41	2023-12-12T06:52:22	5-21:17:28	11867944	pilcms
billing=1,cpu=1,mem=2000M,node=1	2023-12-11T13:42:02	2023-12-12T09:01:10	19:19:08	11868061	prdatl
billing=8,cpu=8,mem=32000M,node=1	2023-12-11T14:05:54	2023-12-13T09:16:01	14-09:20:56	11868195	pilcms

Dell server carbon footprint

- Dell and many other vendors publish environmental implications for their products.
- Dell: https://www.dell.com/learn/ag/en/agcorp1/corporate_corp-comm_dellwebpage/environment_carbon_footprint_products

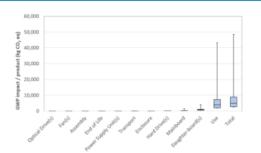
From design to end-of-life and everything in between, we work to improve the environmental impact of the products you purchase. As part of that process, we estimate the specific impacts throughout the lifecycle. This includes the contributions from materials, manufacturing, distribution, use and end-of-life management.


This product's estimated carbon footprint:

7260 kgCO2e *

Estimated impact by lifecycle stage:

Dell uses PAIA (Product Attribute to Impact Algorithm) to perform product carbon footprints. PAIA is a streamlined LCA tool developed by MIT's Materials System Laboratory. It takes into consideration important attributes of the product which can be correlated to activities in order to calculate the product carbon footprint.


Due to high configurability of servers, the information provided here was calculated based on the products highest selling configuration (see assumptions on page 2).

Enterprise Equipment Name

* This product has an estimated standard deviation of +/- 7580 kgCO2e

As part of our commitment to transparency, the chart to the right demonstrates the degree of uncertainty that exists within the PAIA model for product carbon footprinting, based on assumptions we have made for select variables.

Assumptions for calculating product carbon footprint:

Product Weight	18.6 kg	Server Type	Rack	Assembly Location	EU
Product Lifetime	4 years	Use Location	EU	Energy Demand (Yearly TEC)	1433.574 kWh
HDD/SSD Quantity	x4 1.2TB 2.5" HDD	DRAM Capacity	16GB	CPU Quantity	2

7260 kgCO2e

1 of these products... has a footprint approx. equivalent to **driving 17,787 miles** in a passenger car.

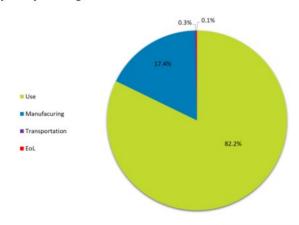
To help our customers and other stakeholders contextualize product carbon footprint values, we provide these approximate equivalencies. Please remember these are estimates and should not be used for emission inventory or formal carbon footprinting exercises.

10 of these products... have a footprint approx. equal to what 85 acres of US forests can absorb in a year.

100 of these products... have a footprint about the same as the annual average carbon footprint of **145 people.**

Calculations are based on the following methodologies: 2.45 miles driven per 1 kg co2e (source: <u>U.S. EPA</u>); approx. 850 kg co2e absorbed per acre of forests over a year (source: <u>U.S. EPA</u>); global personal carbon footprint estimated at 5 MTco2e per person (source: <u>World Bank</u>).

From design to end-of-life and everything in between, we work to improve the environmental impact of the products you purchase. As part of that process, we estimate the specific impacts throughout the lifecycle. This includes the contributions from materials, manufacturing, distribution, use and end-of-life management.


This product's estimated carbon footprint:

7260 kgCO2e *

Estimated impact by lifecycle stage:

Dell uses PAIA (Product Attribute to Impact Algorithm) to perform product carbon footprints. PAIA is a streamlined LCA tool developed by MIT's Materials System Laboratory. It takes into consideration important attributes of the product which can be correlated to activities in order to calculate the product carbon footprint.

Due to high configurability of servers, the information provided here was calculated based on the products highest selling configuration (see assumptions on page 2).

Enterprise Equipment Name

* This product has an estimated standard deviation of +/- 7580 kgCO2e

As part of our commitment to transparency, the chart to the right demonstrates the degree of uncertainty that exists within the PAIA model for product carbon footprinting, based on assumptions we have made for select variables.

Assumptions for calculating product carbon footprint:

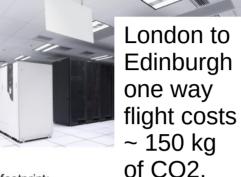
Product Weight	18.6 kg	Server Type	Rack	Assembly Location	EU
Product Lifetime	4 years	Use Location	EU	Energy Demand (Yearly TEC)	1433.574 kWh
HDD/SSD Quantity	x4 1.2TB 2.5" HDD	DRAM Capacity	16GB	CPU Quantity	2

7260 kgCO2e

1 of these products... has a footprint approx. equivalent to **driving 17,787 miles** in a passenger car.

To help our customers and other stakeholders contextualize product carbon footprint values, we provide these approximate equivalencies. Please remember these are estimates and should not be used for emission inventory or formal carbon footprinting exercises.

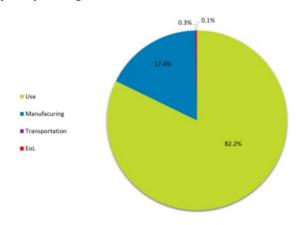
10 of these products... have a footprint approx. equal to what 85 acres of US forests can absorb in a year.



100 of these products... have a footprint about the same as the annual average carbon footprint of 145 people.

Calculations are based on the following methodologies: 2.45 miles driven per 1 kg co2e (source: <u>U.S. EPA</u>); approx. 850 kg co2e absorbed per acre of forests over a year (source: <u>U.S. EPA</u>); global personal carbon footprint estimated at 5 MTco2e per person (source: <u>World Bank</u>).

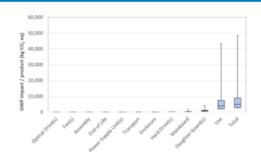
From design to end-of-life and everything in between, we work to improve the environmental impact of the products you purchase. As part of that process, we estimate the specific impacts throughout the lifecycle. This includes the contributions from materials, manufacturing, distribution, use and end-of-life management.


This product's estimated carbon footprint:

7260 kgCO2e *

Estimated impact by lifecycle stage:

Dell uses PAIA (Product Attribute to Impact Algorithm) to perform product carbon footprints. PAIA is a streamlined LCA tool developed by MIT's Materials System Laboratory. It takes into consideration important attributes of the product which can be correlated to activities in order to calculate the product carbon footprint.


Due to high configurability of servers, the information provided here was calculated based on the products highest selling configuration (see assumptions on page 2).

Enterprise Equipment Name

* This product has an estimated standard deviation of +/- 7580 kgCO2e

As part of our commitment to transparency, the chart to the right demonstrates the degree of uncertainty that exists within the PAIA model for product carbon footprinting, based on assumptions we have made for select variables.

Assumptions for calculating product carbon footprint:

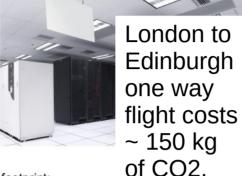
Product Weight	18.6 kg	Server Type	Rack	Assembly Location	EU	
Product Lifetime	4 years	Use Location	EU	Energy Demand (Yearly TEC)	1433.574 kWh	
HDD/SSD Quantity	x4 1.2TB 2.5" HDD	DRAM Capacity	16GB	CPU Quantity	2	

7260 kgCO2e

1 of these products... has a footprint approx. equivalent to **driving 17,787 miles** in a passenger car.

To help our customers and other stakeholders contextualize product carbon footprint values, we provide these approximate equivalencies. Please remember these are estimates and should not be used for emission inventory or formal carbon footprinting exercises.

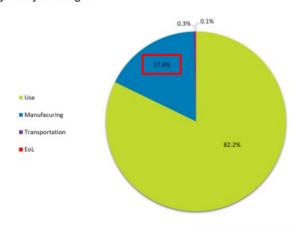
10 of these products... have a footprint approx. equal to what 85 acres of US forests can absorb in a year.



100 of these products... have a footprint about the same as the annual average carbon footprint of 145 people.

Calculations are based on the following methodologies: 2.45 miles driven per 1 kg co2e (source: <u>U.S. EPA</u>); approx. 850 kg co2e absorbed per acre of forests over a year (source: <u>U.S. EPA</u>); global personal carbon footprint estimated at 5 MTco2e per person (source: <u>World Bank</u>).

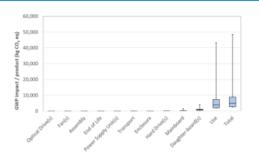
From design to end-of-life and everything in between, we work to improve the environmental impact of the products you purchase. As part of that process, we estimate the specific impacts throughout the lifecycle. This includes the contributions from materials, manufacturing, distribution, use and end-of-life management.


This product's estimated carbon footprint:

7260 kgCO2e *

Estimated impact by lifecycle stage:

Dell uses PAIA (Product Attribute to Impact Algorithm) to perform product carbon footprints. PAIA is a streamlined LCA tool developed by MIT's Materials System Laboratory. It takes into consideration important attributes of the product which can be correlated to activities in order to calculate the product carbon footprint.


Due to high configurability of servers, the information provided here was calculated based on the products highest selling configuration (see assumptions on page 2).

Enterprise Equipment Name

* This product has an estimated standard deviation of +/- 7580 kgCO2e

As part of our commitment to transparency, the chart to the right demonstrates the degree of uncertainty that exists within the PAIA model for product carbon footprinting, based on assumptions we have made for select variables.

Assumptions for calculating product carbon footprint:

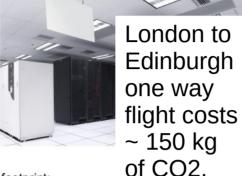
Product Weight	18.6 kg	Server Type	Rack	Assembly Location	EU	
Product Lifetime	4 years	Use Location	EU	Energy Demand (Yearly TEC)	1433.574 kWh	
HDD/SSD Quantity	x4 1.2TB 2.5" HDD	DRAM Capacity	16GB	CPU Quantity	2	

7260 kgCO2e

1 of these products... has a footprint approx. equivalent to **driving 17,787 miles** in a passenger car.

To help our customers and other stakeholders contextualize product carbon footprint values, we provide these approximate equivalencies. Please remember these are estimates and should not be used for emission inventory or formal carbon footprinting exercises.

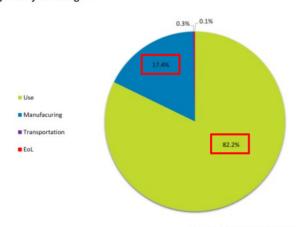
10 of these products... have a footprint approx. equal to what 85 acres of US forests can absorb in a year.



100 of these products... have a footprint about the same as the annual average carbon footprint of 145 people.

Calculations are based on the following methodologies: 2.45 miles driven per 1 kg co2e (source: <u>U.S. EPA)</u>; approx. 850 kg co2e absorbed per acre of forests over a year (source: <u>U.S. EPA</u>); global personal carbon footprint estimated at 5 MTco2e per person (source: <u>World Bank</u>).

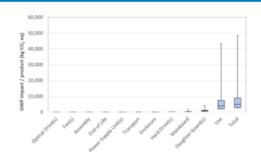
From design to end-of-life and everything in between, we work to improve the environmental impact of the products you purchase. As part of that process, we estimate the specific impacts throughout the lifecycle. This includes the contributions from materials, manufacturing, distribution, use and end-of-life management.


This product's estimated carbon footprint:

7260 kgCO2e *

Estimated impact by lifecycle stage:

Dell uses PAIA (Product Attribute to Impact Algorithm) to perform product carbon footprints. PAIA is a streamlined LCA tool developed by MIT's Materials System Laboratory. It takes into consideration important attributes of the product which can be correlated to activities in order to calculate the product carbon footprint.


Due to high configurability of servers, the information provided here was calculated based on the products highest selling configuration (see assumptions on page 2).

Enterprise Equipment Name

* This product has an estimated standard deviation of +/- 7580 kgCO2e

As part of our commitment to transparency, the chart to the right demonstrates the degree of uncertainty that exists within the PAIA model for product carbon footprinting, based on assumptions we have made for select variables.

Assumptions for calculating product carbon footprint:

Product Weight	18.6 kg	Server Type	Rack	Assembly Location	EU
Product Lifetime	4 years	Use Location	EU	Energy Demand (Yearly TEC)	1433.574 kWh
HDD/SSD Quantity	x4 1.2TB 2.5" HDD	DRAM Capacity	16GB	CPU Quantity	2

7260 kgCO2e

1 of these products... has a footprint approx. equivalent to **driving 17,787 miles** in a passenger car.

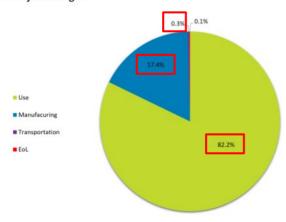
To help our customers and other stakeholders contextualize product carbon footprint values, we provide these approximate equivalencies. Please remember these are estimates and should not be used for emission inventory or formal carbon footprinting exercises.

10 of these products... have a footprint approx. equal to what 85 acres of US forests can absorb in a year.

100 of these products... have a footprint about the same as the annual average carbon footprint of 145 people.

Calculations are based on the following methodologies: 2.45 miles driven per 1 kg co2e (source: <u>U.S. EPA</u>); approx. 850 kg co2e absorbed per acre of forests over a year (source: <u>U.S. EPA</u>); global personal carbon footprint estimated at 5 MTco2e per person (source: <u>World Bank</u>).

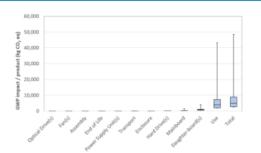
From design to end-of-life and everything in between, we work to improve the environmental impact of the products you purchase. As part of that process, we estimate the specific impacts throughout the lifecycle. This includes the contributions from materials, manufacturing, distribution, use and end-of-life management.


This product's estimated carbon footprint:

7260 kgCO2e *

Estimated impact by lifecycle stage:

Dell uses PAIA (Product Attribute to Impact Algorithm) to perform product carbon footprints. PAIA is a streamlined LCA tool developed by MIT's Materials System Laboratory. It takes into consideration important attributes of the product which can be correlated to activities in order to calculate the product carbon footprint.


Due to high configurability of servers, the information provided here was calculated based on the products highest selling configuration (see assumptions on page 2).

Enterprise Equipment Name

* This product has an estimated standard deviation of +/- 7580 kgCO2e

As part of our commitment to transparency, the chart to the right demonstrates the degree of uncertainty that exists within the PAIA model for product carbon footprinting, based on assumptions we have made for select variables.

Assumptions for calculating product carbon footprint:

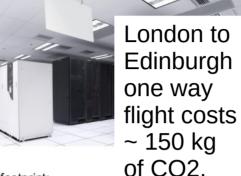
Product Weight	18.6 kg	Server Type	Rack	Assembly Location	EU
Product Lifetime	4 years	Use Location	EU	Energy Demand (Yearly TEC)	1433.574 kWh
HDD/SSD Quantity	x4 1.2TB 2.5" HDD	DRAM Capacity	16GB	CPU Quantity	2

7260 kgCO2e

1 of these products... has a footprint approx. equivalent to **driving 17,787 miles** in a passenger car.

To help our customers and other stakeholders contextualize product carbon footprint values, we provide these approximate equivalencies. Please remember these are estimates and should not be used for emission inventory or formal carbon footprinting exercises.

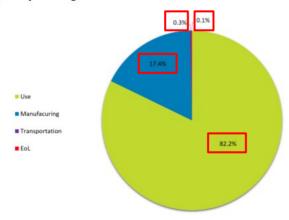
10 of these products... have a footprint approx. equal to what 85 acres of US forests can absorb in a year.



100 of these products... have a footprint about the same as the annual average carbon footprint of 145 people.

Calculations are based on the following methodologies: 2.45 miles driven per 1 kg co2e (source: <u>U.S. EPA</u>); approx. 850 kg co2e absorbed per acre of forests over a year (source: <u>U.S. EPA</u>); global personal carbon footprint estimated at 5 MTco2e per person (source: <u>World Bank</u>).

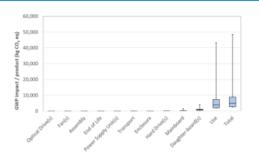
From design to end-of-life and everything in between, we work to improve the environmental impact of the products you purchase. As part of that process, we estimate the specific impacts throughout the lifecycle. This includes the contributions from materials, manufacturing, distribution, use and end-of-life management.


This product's estimated carbon footprint:

7260 kgCO2e *

Estimated impact by lifecycle stage:

Dell uses PAIA (Product Attribute to Impact Algorithm) to perform product carbon footprints. PAIA is a streamlined LCA tool developed by MIT's Materials System Laboratory. It takes into consideration important attributes of the product which can be correlated to activities in order to calculate the product carbon footprint.


Due to high configurability of servers, the information provided here was calculated based on the products highest selling configuration (see assumptions on page 2).

Enterprise Equipment Name

* This product has an estimated standard deviation of +/- 7580 kgCO2e

As part of our commitment to transparency, the chart to the right demonstrates the degree of uncertainty that exists within the PAIA model for product carbon footprinting, based on assumptions we have made for select variables.

Assumptions for calculating product carbon footprint:

Product Weight	18.6 kg	Server Type	Rack	Assembly Location	EU
Product Lifetime	4 years	Use Location	EU	Energy Demand (Yearly TEC)	1433.574 kWh
HDD/SSD Quantity	x4 1.2TB 2.5" HDD	DRAM Capacity	16GB	CPU Quantity	2

7260 kgCO2e

1 of these products... has a footprint approx. equivalent to **driving 17,787 miles** in a passenger car.

To help our customers and other stakeholders contextualize product carbon footprint values, we provide these approximate equivalencies. Please remember these are estimates and should not be used for emission inventory or formal carbon footprinting exercises.

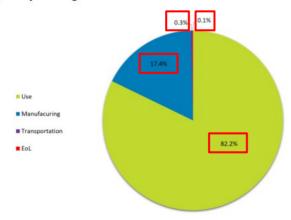
10 of these products... have a footprint approx. equal to what 85 acres of US forests can absorb in a year.



100 of these products... have a footprint about the same as the annual average carbon footprint of **145 people.**

Calculations are based on the following methodologies: 2.45 miles driven per 1 kg co2e (source: <u>U.S. EPA</u>); approx. 850 kg co2e absorbed per acre of forests over a year (source: <u>U.S. EPA</u>); global personal carbon footprint estimated at 5 MTco2e per person (source: World Bank).

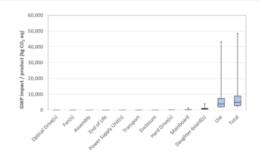
From design to end-of-life and everything in between, we work to improve the environmental impact of the products you purchase. As part of that process, we estimate the specific impacts throughout the lifecycle. This includes the contributions from materials, manufacturing, distribution, use and end-of-life management.


This product's estimated carbon footprint:

7260 kgCO2e *

Estimated impact by lifecycle stage:

Dell uses PAIA (Product Attribute to Impact Algorithm) to perform product carbon footprints. PAIA is a streamlined LCA tool developed by MIT's Materials System Laboratory. It takes into consideration important attributes of the product which can be correlated to activities in order to calculate the product carbon footprint.


Due to high configurability of servers, the information provided here was calculated based on the products highest selling configuration (see assumptions on page 2).

Enterprise Equipment Name

* This product has an estimated standard deviation of +/- 7580 kgCO2e

As part of our commitment to transparency, the chart to the right demonstrates the degree of uncertainty that exists within the PAIA model for product carbon footprinting, based on assumptions we have made for select variables.

Assumptions for calculating product carbon footprint:

Product Weight	18.6 kg	Server Type	Rack	Assembly Location	EU
Product Lifetime	4 years	Use Location	EU	Energy Demand (Yearly TEC)	1433.574 kWh
HDD/SSD Quantity	x4 1.2TB 2.5" HDD	DRAM Capacity	16GB	CPU Quantity	2

7260 kgCO2e

1 of these products... has a footprint approx. equivalent to **driving 17,787 miles** in a passenger car.

To help our customers and other stakeholders contextualize product carbon footprint values, we provide these approximate equivalencies. Please remember these are estimates and should not be used for emission inventory or formal carbon footprinting exercises.

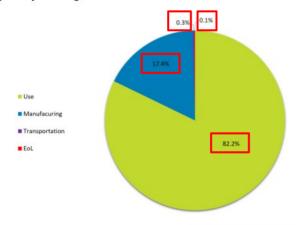
10 of these products... have a footprint approx. equal to what 85 acres of US forests can absorb in a year.



100 of these products... have a footprint about the same as the annual average carbon footprint of **145 people.**

Calculations are based on the following methodologies: 2.45 miles driven per 1 kg co2e (source: <u>U.S. EPA</u>); approx. 850 kg co2e absorbed per acre of forests over a year (source: <u>U.S. EPA</u>); global personal carbon footprint estimated at 5 MTco2e per person (source: <u>World Bank</u>).

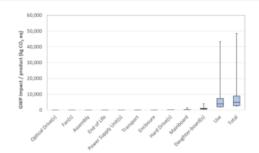
From design to end-of-life and everything in between, we work to improve the environmental impact of the products you purchase. As part of that process, we estimate the specific impacts throughout the lifecycle. This includes the contributions from materials, manufacturing, distribution, use and end-of-life management.


This product's estimated carbon footprint:

7260 kgCO2e

Estimated impact by lifecycle stage:

Dell uses PAIA (Product Attribute to Impact Algorithm) to perform product carbon footprints. PAIA is a streamlined LCA tool developed by MIT's Materials System Laboratory. It takes into consideration important attributes of the product which can be correlated to activities in order to calculate the product carbon footprint.


Due to high configurability of servers, the information provided here was calculated based on the products highest selling configuration (see assumptions on page 2).

Enterprise Equipment Name

* This product has an estimated standard deviation of +/- 7580 kgC02e

As part of our commitment to transparency, the chart to the right demonstrates the degree of uncertainty that exists within the PAIA model for product carbon footprinting, based on assumptions we have made for select variables.

Assumptions for calculating product carbon footprint:

Product Weight	18.6 kg	Server Type	Rack	Assembly Location	EU
Product Lifetime	4 years	Use Location	EU	Energy Demand (Yearly TEC)	1433.574 kWh
HDD/SSD Quantity	x4 1.2TB 2.5" HDD	DRAM Capacity	16GB	CPU Quantity	2

7260 kgCO2e

1 of these products... has a footprint approx. equivalent to **driving 17,787 miles** in a passenger car.

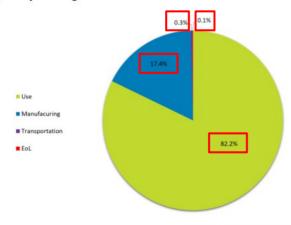
To help our customers and other stakeholders contextualize product carbon footprint values, we provide these approximate equivalencies. Please remember these are estimates and should not be used for emission inventory or formal carbon footprinting exercises.

10 of these products... have a footprint approx. equal to what 85 acres of US forests can absorb in a year.

100 of these products... have a footprint about the same as the annual average carbon footprint of **145 people.**

Calculations are based on the following methodologies: 2.45 miles driven per 1 kg co2e (source: <u>U.S. EPA</u>); approx. 850 kg co2e absorbed per acre of forests over a year (source: <u>U.S. EPA</u>); global personal carbon footprint estimated at 5 MTco2e per person (source: <u>World Bank</u>).

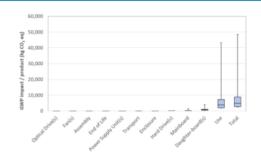
From design to end-of-life and everything in between, we work to improve the environmental impact of the products you purchase. As part of that process, we estimate the specific impacts throughout the lifecycle. This includes the contributions from materials, manufacturing, distribution, use and end-of-life management.


This product's estimated carbon footprint:

7260 kgCO2e *

Estimated impact by lifecycle stage:

Dell uses PAIA (Product Attribute to Impact Algorithm) to perform product carbon footprints. PAIA is a streamlined LCA tool developed by MIT's Materials System Laboratory. It takes into consideration important attributes of the product which can be correlated to activities in order to calculate the product carbon footprint.


Due to high configurability of servers, the information provided here was calculated based on the products highest selling configuration (see assumptions on page 2).

Enterprise Equipment Name

* This product has an estimated standard deviation of +/- 7580 kgCO2e

As part of our commitment to transparency, the chart to the right demonstrates the degree of uncertainty that exists within the PAIA model for product carbon footprinting, based on assumptions we have made for select variables.

Assumptions for calculating product carbon footprint:

Product Weight	18.6 kg		Server Type	Rack	Assembly Location	EU	
Product Lifetime	4 years		Use Location	EU	Energy Demand (Yearly TEC)	1433.574 kWh	
HDD/SSD Quantity	x4 1.2TB HDD	2.5"	DRAM Capacity	16GB	CPU Quantity	2	

7260 kgCO2e

1 of these products... has a footprint approx. equivalent to **driving 17,787 miles** in a passenger car.

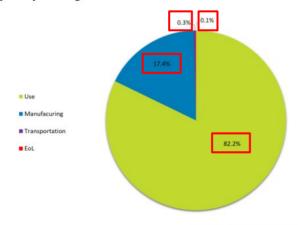
To help our customers and other stakeholders contextualize product carbon footprint values, we provide these approximate equivalencies. Please remember these are estimates and should not be used for emission inventory or formal carbon footprinting exercises.

10 of these products... have a footprint approx. equal to what 85 acres of US forests can absorb in a year.

100 of these products... have a footprint about the same as the annual average carbon footprint of 145 people.

Calculations are based on the following methodologies: 2.45 miles driven per 1 kg co2e (source: <u>U.S. EPA</u>); approx. 850 kg co2e absorbed per acre of forests over a year (source: <u>U.S. EPA</u>); global personal carbon footprint estimated at 5 MTco2e per person (source: <u>World Bank</u>).

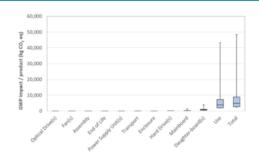
From design to end-of-life and everything in between, we work to improve the environmental impact of the products you purchase. As part of that process, we estimate the specific impacts throughout the lifecycle. This includes the contributions from materials, manufacturing, distribution, use and end-of-life management.


This product's estimated carbon footprint:

7260 kgCO2e *

Estimated impact by lifecycle stage:

Dell uses PAIA (Product Attribute to Impact Algorithm) to perform product carbon footprints. PAIA is a streamlined LCA tool developed by MIT's Materials System Laboratory. It takes into consideration important attributes of the product which can be correlated to activities in order to calculate the product carbon footprint.


Due to high configurability of servers, the information provided here was calculated based on the products highest selling configuration (see assumptions on page 2).

Enterprise Equipment Name

* This product has an estimated standard deviation of +/- 7580 kgCO2e

As part of our commitment to transparency, the chart to the right demonstrates the degree of uncertainty that exists within the PAIA model for product carbon footprinting, based on assumptions we have made for select variables.

Assumptions for calculating product carbon footprint:

Product Weight	18.6 kg		Server Type	Rack	Assembly Location	EU
Product Lifetime	4 years		Use Location	EU	Energy Demand (Yearly TEC)	1433.574 kWh
HDD/SSD Quantity	x4 1.2TB 2 HDD	2.5"	DRAM Capacity	16GB	CPU Quantity	2

7260 kgCO2e

1 of these products... has a footprint approx. equivalent to **driving 17,787 miles** in a passenger car.

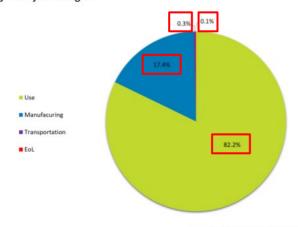
To help our customers and other stakeholders contextualize product carbon footprint values, we provide these approximate equivalencies. Please remember these are estimates and should not be used for emission inventory or formal carbon footprinting exercises.

10 of these products... have a footprint approx. equal to what 85 acres of US forests can absorb in a year.

100 of these products... have a footprint about the same as the annual average carbon footprint of **145 people.**

Calculations are based on the following methodologies: 2.45 miles driven per 1 kg co2e (source: <u>U.S. EPA</u>); approx. 850 kg co2e absorbed per acre of forests over a year (source: <u>U.S. EPA</u>); global personal carbon footprint estimated at 5 MTco2e per person (source: <u>World Bank</u>).

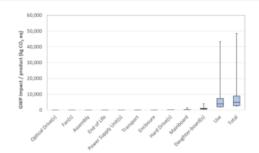
From design to end-of-life and everything in between, we work to improve the environmental impact of the products you purchase. As part of that process, we estimate the specific impacts throughout the lifecycle. This includes the contributions from materials, manufacturing, distribution, use and end-of-life management.


This product's estimated carbon footprint:

7260 kgCO2e *

Estimated impact by lifecycle stage:

Dell uses PAIA (Product Attribute to Impact Algorithm) to perform product carbon footprints. PAIA is a streamlined LCA tool developed by MIT's Materials System Laboratory. It takes into consideration important attributes of the product which can be correlated to activities in order to calculate the product carbon footprint.


Due to high configurability of servers, the information provided here was calculated based on the products highest selling configuration (see assumptions on page 2).

Enterprise Equipment Name

* This product has an estimated standard deviation of +/- 7580 kgC02e

As part of our commitment to transparency, the chart to the right demonstrates the degree of uncertainty that exists within the PAIA model for product carbon footprinting, based on assumptions we have made for select variables.

Assumptions for calculating product carbon footprint:

Product Weight	18.6 kg		Server Type	Rack	Assembly Location	EU	
Product Lifetime	4 years		Use Location	EU	Energy Demand (Yearly TEC)	143	3.574 kWh
HDD/SSD Quantity	x4 1.2TB : HDD	2.5"	DRAM Capacity	16GB	CPU Quantity	2	

7260 kgCO2e

1 of these products... has a footprint approx. equivalent to **driving 17,787 miles** in a passenger car.

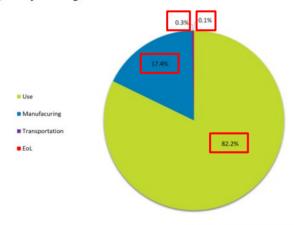
To help our customers and other stakeholders contextualize product carbon footprint values, we provide these approximate equivalencies. Please remember these are estimates and should not be used for emission inventory or formal carbon footprinting exercises.

10 of these products... have a footprint approx. equal to what 85 acres of US forests can absorb in a year.

100 of these products... have a footprint about the same as the annual average carbon footprint of **145 people.**

Calculations are based on the following methodologies: 2.45 miles driven per 1 kg co2e (source: <u>U.S. EPA</u>); approx. 850 kg co2e absorbed per acre of forests over a year (source: <u>U.S. EPA</u>); global personal carbon footprint estimated at 5 MTco2e per person (source: World Bank).

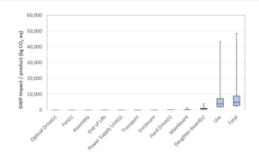
From design to end-of-life and everything in between, we work to improve the environmental impact of the products you purchase. As part of that process, we estimate the specific impacts throughout the lifecycle. This includes the contributions from materials, manufacturing, distribution, use and end-of-life management.


This product's estimated carbon footprint:

7260 kgCO2e *

Estimated impact by lifecycle stage:

Dell uses PAIA (Product Attribute to Impact Algorithm) to perform product carbon footprints. PAIA is a streamlined LCA tool developed by MIT's Materials System Laboratory. It takes into consideration important attributes of the product which can be correlated to activities in order to calculate the product carbon footprint.


Due to high configurability of servers, the information provided here was calculated based on the products highest selling configuration (see assumptions on page 2).

Enterprise Equipment Name

* This product has an estimated standard deviation of +/- 7580 kgCO2e

As part of our commitment to transparency, the chart to the right demonstrates the degree of uncertainty that exists within the PAIA model for product carbon footprinting, based on assumptions we have made for select variables.

Assumptions for calculating product carbon footprint:

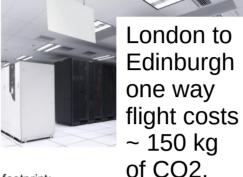
Product Weight	18.6 kg		Server Type	Rack		Rack		Assembly Location	EU		
Product Lifetime	4 years		Use Location	EU		Energy Demand (Yearly TEC)	1433.574 kWh				
HDD/SSD Quantity	x4 1.2TB : HDD	2.5"	DRAM Capacity	16GB		CPU Quantity	2				

7260 kgCO2e

1 of these products... has a footprint approx. equivalent to **driving 17,787 miles** in a passenger car.

To help our customers and other stakeholders contextualize product carbon footprint values, we provide these approximate equivalencies. Please remember these are estimates and should not be used for emission inventory or formal carbon footprinting exercises.

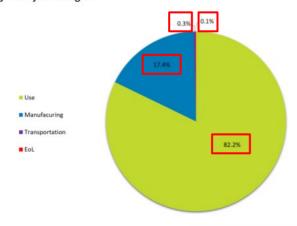
10 of these products... have a footprint approx. equal to what 85 acres of US forests can absorb in a year.



100 of these products... have a footprint about the same as the annual average carbon footprint of **145 people.**

Calculations are based on the following methodologies: 2.45 miles driven per 1 kg co2e (source: <u>U.S. EPA</u>); approx. 850 kg co2e absorbed per acre of forests over a year (source: <u>U.S. EPA</u>); global personal carbon footprint estimated at 5 MTco2e per person (source: <u>World Bank</u>).

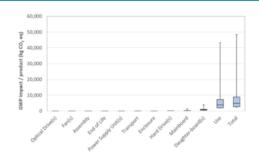
From design to end-of-life and everything in between, we work to improve the environmental impact of the products you purchase. As part of that process, we estimate the specific impacts throughout the lifecycle. This includes the contributions from materials, manufacturing, distribution, use and end-of-life management.


This product's estimated carbon footprint:

7260 kgCO2e *

Estimated impact by lifecycle stage:

Dell uses PAIA (Product Attribute to Impact Algorithm) to perform product carbon footprints. PAIA is a streamlined LCA tool developed by MIT's Materials System Laboratory. It takes into consideration important attributes of the product which can be correlated to activities in order to calculate the product carbon footprint.


Due to high configurability of servers, the information provided here was calculated based on the products highest selling configuration (see assumptions on page 2).

Enterprise Equipment Name

* This product has an estimated standard deviation of +/- 7580 kgC02e

As part of our commitment to transparency, the chart to the right demonstrates the degree of uncertainty that exists within the PAIA model for product carbon footprinting, based on assumptions we have made for select variables.

Assumptions for calculating product carbon footprint:

Product Weight	18.6 kg		Server Type	Rack		Assembly Location	EU		
Product Lifetime	4 years		Use Location	EU		Energy Demand (Yearly TEC)	1433.574 kWh		
HDD/SSD Quantity	x4 1.2TB: HDD	2.5"	DRAM Capacity	16GB		CPU Quantity			1

7260 kgCO2e

1 of these products... has a footprint approx. equivalent to **driving 17,787 miles** in a passenger car.

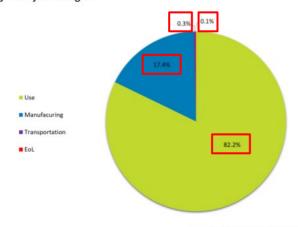
To help our customers and other stakeholders contextualize product carbon footprint values, we provide these approximate equivalencies. Please remember these are estimates and should not be used for emission inventory or formal carbon footprinting exercises.

10 of these products... have a footprint approx. equal to what 85 acres of US forests can absorb in a year.

100 of these products... have a footprint about the same as the annual average carbon footprint of 145 people.

Calculations are based on the following methodologies: 2.45 miles driven per 1 kg co2e (source: <u>U.S. EPA</u>); approx. 850 kg co2e absorbed per acre of forests over a year (source: <u>U.S. EPA</u>); global personal carbon footprint estimated at 5 MTco2e per person (source: <u>World Bank</u>).

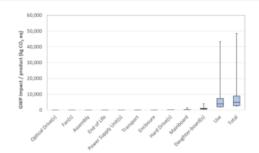
From design to end-of-life and everything in between, we work to improve the environmental impact of the products you purchase. As part of that process, we estimate the specific impacts throughout the lifecycle. This includes the contributions from materials, manufacturing, distribution, use and end-of-life management.


This product's estimated carbon footprint:

7260 kgCO2e

Estimated impact by lifecycle stage:

Dell uses PAIA (Product Attribute to Impact Algorithm) to perform product carbon footprints. PAIA is a streamlined LCA tool developed by MIT's Materials System Laboratory. It takes into consideration important attributes of the product which can be correlated to activities in order to calculate the product carbon footprint.


Due to high configurability of servers, the information provided here was calculated based on the products highest selling configuration (see assumptions on page 2).

Enterprise Equipment Name

* This product has an estimated standard deviation of +/- 7580 kgC02e

As part of our commitment to transparency, the chart to the right demonstrates the degree of uncertainty that exists within the PAIA model for product carbon footprinting, based on assumptions we have made for select variables.

Assumptions for calculating product carbon footprint:

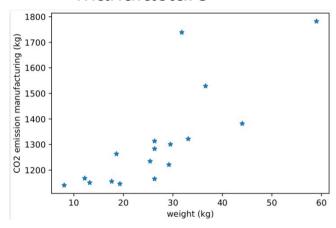
Product Weight	18.6 kg		Server Type	Rack	Assembly Location	EU	
Product Lifetime	4 years		Use Location	EU	Energy Demand (Yearly TEC)	143	3.574 kWh
HDD/SSD Quantity	x4 1.2TB 2 HDD	2.5"	DRAM Capacity	16GB	CPU Quantity	2	

7260 kgCO2e

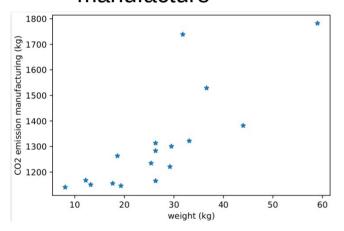
1 of these products... has a footprint approx. equivalent to **driving 17,787 miles** in a passenger car.

To help our customers and other stakeholders contextualize product carbon footprint values, we provide these approximate equivalencies. Please remember these are estimates and should not be used for emission inventory or formal carbon footprinting exercises.

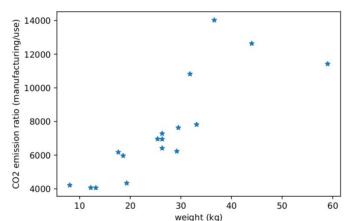
10 of these products... have a footprint approx. equal to what 85 acres of US forests can absorb in a year.

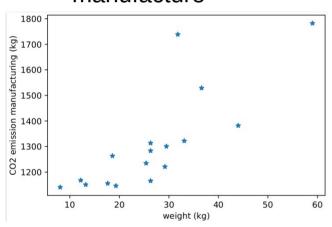

100 of these products... have a footprint about the same as the annual average carbon footprint of 145 people.

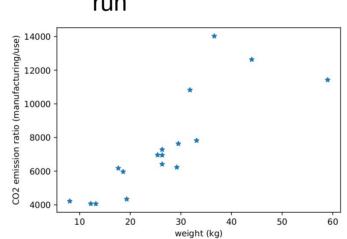
Calculations are based on the following methodologies: 2.45 miles driven per 1 kg co2e (source: <u>U.S. EPA</u>); approx. 850 kg co2e absorbed per acre of forests over a year (source: <u>U.S. EPA</u>); global personal carbon footprint estimated at 5 MTco2e per person (source: World Bank).

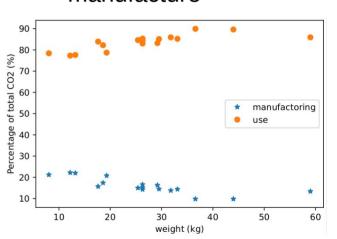

More Dell servers

machine nam 📤	cpu number	dram capacity (G)	HDD/SSD quantity	product weight (kg)	carbon footprint (kgCO2e)	manufacturing	use	energy demand (yearly tec in kwh)
PowerEdge R230		16	2*1T(2.5 HDD)	8.05	5380	21.2	78.4	1011.34
PowerEdge R240		16	2*1T(3.5 HDD)	12.2	5260	22.2	77.3	980.7
PowerEdge R330		16	2*1T(3.5 HDD)	19.3	5510	20.8	78.7	1014.8
PowerEdge R340		16	2*1T(3.5 HDD)	13.2	5230	22	77.6	987.3
PowerEdge R430		16	2*1T(3.5 HDD)	26.3	8150	14.3	85.3	1760.3
PowerEdge R440		16	2*1.2T(2.5 HDD)	17.64	7360	15.7	83.9	1480
PowerEdge R540		32	4*2T(3.5 HDD)	25.4	8230	15	84.6	1636.37
PowerEdge R630		16	4*1.2T(2.5 HDD)	18.6	7260	17.4	82.2	1433.57
PowerEdge R640		32	4*300G(2.5 HDD)	26.3	7730	16.6	83	1760.3
PowerEdge R730		16	4*300G(2.5 HDD)	29.2	7490	16.3	83.2	1473.5
PowerEdge R730XD		32	2*300G(2.5 HDD)+6*1T(2.5 HDD)	29.5	8970	14.5	85.1	1813.32
PowerEdge R740		32	2*300G(2.5 HDD)+1*1T(2.5 HDD)	26.3	8640	15.2	84.3	1760.3
PowerEdge R740XD		32	4*1T(2.5 HDD)+2*120G(2.5 HDD)	33.1	9180	14.4	85.2	1858.87
PowerEdge R830		256	4*1T(2.5 HDD)+2*300G(2.5 HDD)	31.8	12600	13.8	85.9	2622.31
PowerEdge R840		128	4*1T(2.5 HDD)+2*300G (2.5 HDD)	36.6	15600	9.8	89.9	3325.7
PowerEdge R930	4	256	2*300G(2.5 HDD)+4*2T(2.5 HDD)	59	13300	13.4	85.9	2764.22
PowerEdge R940		64	2*300G(2.5 HDD)+4*2T(2.5 HDD)	44	14100	9.8	89.6	3012.13

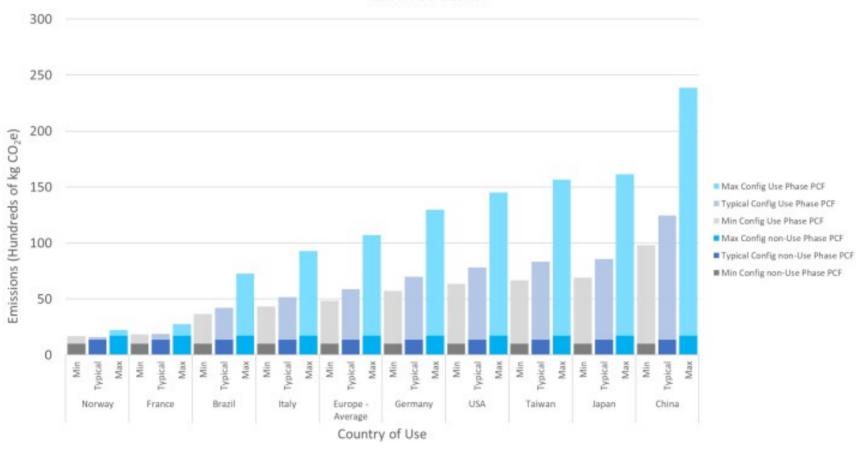

Heavier machines cost more CO2 to manufacture


Heavier machines cost more CO2 to manufacture


Heavier machines cost more CO2 to run


Heavier machines cost more CO2 to manufacture

Heavier machines cost more CO2 to run


Heavier machines cost more to run than to manufacture

To be continued

PCF Dependency on Configuration, Location, and Use Phase

Ex: R750 Server

