The 10Gb/s project

COSMA

Alastair Basden / Jeremy Yates

Institute for Computational Cosmology

Alastair Basden
DiRAC / Durham University

Trans-atlantic big data

- Aiming to transfer large (~50TB) datasets from US facilities
 - Achieving 10Gb/s rates
 - 4TB/hour
 - End-to-end transfers
- This seems straightforward
 - But we have very little control

Projects

- ORNL to Cambridge (UKAEA and DiRAC)
 - Large scale wavefunction data (50TB-1PB)
 - Generated in US for fusion and lattice QCD
- Cambridge to Durham (DiRAC)
 - Offsite backups to tape
- Edinburgh to Durham and Cambridge (DiRAC)
 - Movement of wave function data from TURSA
 - Lattice QCD
- Durham to collaborators (VIRGO consortium)
 - Download of large cosmology datasets

Route taken

- From disk (parallel file system)
 - Typically multiple files, some multiple-striped
 - via RAM, fabric
- To Data Transfer Node RAM
- To NIC
- Via Switches/cables/etc
- To NIC
- To RAM
- To disk (parallel file system)
 - via fabric, RAM

Alastair Basden DiRAC / Durham University

Bottlenecks

- Multiple bottlenecks if not optimised
- Aiming to have the external network as the sole bottleneck
 - Node to disk transfers should not be a problem
 - Parallel file system: capable of line rate from a node
 - 200Gb/s HDR InfiniBand

Logistics

- Users (with an account at both ends)
- System administrators
- Data transfer experts
- Multiple transfer software options
 - Globus
 - BBCP
 - FTS3

Generic case

- No control over external projects who use the facilities
 - Globus slected by the projects
 - FTS3 not yet ready for use with tokens
 - · We will aim to use it when it becomes available

Optimisations

9-17-10 11-17-12 13-17-14 15-17-16 17-17-18 19

- Optimise the various components of the IO stack
 - Lustre striping
 - Ceph placement
 - TCP parameters
 - iperf3, tcpmon
 - Switch configurations

Current status

- Link to Durham is a 4x 10G bonded link to JANET
 - Max 10Gb/s for single transfer
- MTU settings require changing
 - Central IT change request process
 - Collaboration with JISC
 - Currently seems to be differing MTU sizes
- DoS detection may be hampering things
- 8Gb/s transfers between Cambridge and Durham are achievable
- 25Gb/s transfers between Cambridge and GEANT London
- 400Mb/s from the US Frontier system (peak around 800Mb/s)
- ORNL to London: 6.4Gb/s (1500 MTU)

Work completed

- Network cards upgraded to 100G
- Globus installed at Cambridge
 - Already present at Durham
 - Free version, so some performance tuning not available
 - To be determined: whether a paid licence is necessary (£20-30k)
- Network maps/architecture diagrams understood

Some settings updated

- Ring buffer size:
 - /usr/sbin/ethtool -G p2p1 rx 8192 tx 8192

sysctl.conf:

- net.core.rmem max = 268435456
- net.core.wmem max = 268435456
- # min/default/max TCP read and write buffers
- # increase Linux autotuning TCP buffer limit
- net.ipv4.tcp_rmem = 4096 87380 268435456
- net.ipv4.tcp_wmem = 4096 65536 268435456
- # increase the length of the processor input queue number of unprocessed input packets (Mellanox value too)

COSMA

- net.core.netdev_max_backlog=250000
- # recommended default congestion control
- net.ipv4.tcp_congestion_control=cubic
- # don't cache ssthresh from previous connection
- net.ipv4.tcp_no_metrics_save=1
- # recommended for hosts with jumbo frames enabled so can deal with MTU 1500 ESnet also recommend enable
- net.ipv4.tcp_mtu_probing=1
- # enable timestamps
- net.ipv4.tcp_timestamps=1
- # enable SACK allows specification which bytes have been lost and which bytes received only retransmit the lost bytes
- # ESnet also recommend enable
- net.ipv4.tcp_sack=1
- # enable window scaling allow larger TCP Receive Window
- net.ipv4.tcp adv win scale=1

Alastair Basden

DiRAC / Durham University

Related:

- LSST transfers from NERSC to CSD3
- PerfSonar node installed at Durham

Ongoing

- Further work required to achieve 10Gb/s
 - May require a link upgrade at Durham
 - (requires a demonstrated need to JISC)
- Expected to be achievable
- May require additional software
 - On-the-fly tuning of congestion/buffers
- And other tunings
 - To/from file not yet optimised