Working towards Net-Zero in DiRAC

Alastair Basden DiRAC/Durham

Alastair Basden DiRAC / Durham University University Institute for Computational Cosmology

Durham

EOSME

Importance of Net-Zero

- 2024: 1.54 degree rise
 - Current projection is 3.1 degrees by 2100
 - Moderately catastrophic

Changes emerging across the climate system

250

E 10

Alastair Basden DiRAC / Durham University

climate-lab-book.ac.uk

Net Zero: What is our goal?

- Max science per CO2?
- Zero CO2?
 - Somewhere in between?

The HPC context

- HPC is a large energy user:
 - COSMA8 ~300kW
 - 70T CO2 / year (assuming regional carbon intensity)
 - 1 flight getting nearly half way across the Atlantic
 - 50 people going to SC24
 - TURSA ~400kW
 - DIaL3 ~170kW
 - CSD3 ~
- The electricity grid is getting greener
 - Embodied and flying has a massive impact!

Regional variation

- carbonintensity.org.uk
- What does this mean?
- How interconnected is the grid?
 - Should we use regional or national values?
 - Probably somewhere in between
 - Regions are connection but transmission
 losses and bandwidth
 - Carbon accounting will likely be based on average UK value

London: 123 North East England: 23 North Scotland: 81 North Wales & Merseyside: 75 North West England: 47 Scotland: 38 lewcastle bon Tyne South East England: 133 South England: 190 South Scotland: 25 Southi Males: 253 South West England: 244 Wales: 180 West Midlands: 126 Yorkshire: 143 g CO2/kWhr (year Dec 2023-Nov 2024)

East Midlands: 209

England: 138

GB: 125

East England: 107 g_CO2/kWhr

Embodied CO2

• A key consideration:

- 850kg CO2 for a COSMA8 compute node
 - 450T for COSMA8 (compute only)
 - As given by Dell: Manufacture and logistics
 - With electricity @23g CO2/kWhr for North East:
 - 7 years of operation to equal emboddied CO2 (Cost ~£10k, electricity cost ~£7k)
 - Closer to 10 years considering other system components
- Some servers closer to 2T:
 - Close to 20 years to balance CO2 sources
- We should run our systems for longer
 - Stewardship of other resources
- And encourage manufacturers to reduce CO2
 - Include requirements within procurements
 - At least for reporting
 - Of embodied, not whole life cycle (13x CO2 intensity assumed)

DiRAC steps

- DiRAC has considered Net-Zero from instantiation
 - 2012 PUE mandated to be below 1.2
 - Standard was 1.6 at the time
 - Evaporative or dry-air cooling
 - DLC on all DiRAC services since 2020
 - Recent audit to help develop a formal DiRAC Net Zero strategy
 - Continue to evolve to a more sustainable facility...
 - Repurposing old systems: COSMA5, COSMA6

System energy data

- All DiRAC sites capture energy information
 - Whole system
 - Per-node energy
 - Storage energy
 - Cooling and UPS energy
 - Some capture network fabric energy

User energy reporting

- Energy usage per job:
 - Captured on some systems
 - User searchable
- Quarterly energy usage email on some systems

Investigations into down-clocking

- Small reduction in performance (10%) for larger reduction in energy usage (30%)
- And BIOS settings:
 - Multi-dimensional parameter space
 - Code dependent
 - Sweet spot improving performance while reducing power

Caveat: embodied CO2

- Accepting 10% longer run times could mean:
 - Less science (is this acceptable? Are we too generous with RAC allocations?)
 - Science extended over a longer period
 - i.e. into the purchase of a new system
 - In which case, the gain is minimal due to high embodied CO2
 - Better efficiency or ways of working
 - i.e. the time wasn't actually required
 - Could we reduce the system size by 10% at procurement and run at full speed?
 - This would yield a REAL CO2 saving*

*Depending on assumptions related to CO2

Bespoke design

- DiRAC bespoke design principles help reduce CO2
 - Less physical infrastructure required
 - Lower embodied CO2
 - (driven by capital budget, rather than CO2 concerns)
 - Higher science per kWhr
 - A single large generic system delivering the same capabilities would have significantly increased CO2

Focus on capability workloads

Solar panel installation

- ~£1m solar panels installed in Durham in 2023
 - Funded by DiRAC Federation
 - 85% of energy dedicated to COSMA

Heat storage

- We do not currently use waste heat within DiRAC
 - There are some low hanging fruits/demonstrators
 - But requires Estates involvement
 - Heat is low grade
 - Investigations into raising the temperature
 - e.g Immersion cooling

Future heat reuse and storage

- Investigation into waste heat reuse
 - EPCC: Calories to Galleries project
 - Transfer heat to inhabited areas using natural water flows
 - Concept stage
 - Durham: ICHS project
 - Using flooded mine workings to store heat in summer
 - Allowing reuse in winter (driving heat pumps)
 - Drilling of test shafts may start this summer
 - Prototype feasibility study stage

Immersion cooling prototype

- Funded to install an immersion tank and servers
 - Made available to UK DTP professionals to visit and explore
 - Funding will allow replacement of old COSMA5 system
 - Compressing ~300 old nodes into 8 new nodes.

Node power-off

- Less well used Slurm partitions allow node power-off at Durham
 - Multi-year data looking at node failure rates
 - COSMA5, DINE
 - Others to be included eventually
- Note: No need to do this for a well used system

Node power reduction

- Should we look at reducing node power when carbon intensity is high?
 - Potentially depends on embodied CO2 calculation
 - Study to be performed

RSE work

- Large improvements in code performance
 - Significantly increased science per CO2
 - Though this may not reduce CO2 itself!
- Examples:
 - GRID, Prompi, SWIFT

DRI Net-Zero studies

- IRISCAST
 - Carbon cost audit

HPC-JEEP

- Per-job energy statistics
- Typically, 80% of system energy is compute
 - Rest is a balance of fabric and storage
 - (Excluding PUE)

Future work

- Grid-scale storage technologies
 - Cut demand from grid at times of peak CO2
 - Ongoing work to improve monitoring
 - Investigation into charging by kWhr
 - Note: UKRI CO2 accounting
- Investigation into load reduction at peak CO2 intensity