
CSD3 TO ECHO S3 DATA TRANSFER
Curation of LSST:UK DEV Outputs

csd3-echo-somerville

Dr Dave McKay, Architect, EPCC

https://github.com/lsst-uk/csd3-echo-somerville

The Vera C. Rubin Telescope and LSST

• Has reached Commissioning Phase and begun taking calibration images

with smaller ComCam CCD

24th October 2024

• Located in Cerro Pachón, Chile

• 8.4 m Simonyi reflecting telescope

• 3.2 gigapixel CCD – the world’s largest digital camera – LSSTCam

• Legacy Survey of Space and Time (LSST)

• conceived in 2001

• 10-year survey starting early 2025

• covering 20,000 sq.-deg. in u,g,r,i,z,y bands

• observing each field 800+ times during survey

• producing 20 TB data per night

• around 10M alerts per night

The Vera C. Rubin Telescope and LSST

The Vera C. Rubin Telescope and LSST

Timescale delayed

by 18 months

LSST:UK – 16 in-kind Contributions – IDAC, DRP and DEV

• The UK’s Independent Data Access Centre
• hosted on Somerville
• provides an RSP
• plus data and services from in-kind contributions including Lasair

Community Broker, Near-IR Data Fusion, multi-survey crossmatch

IDAC

DRP
• The UK’s contribution to Data Release Processing

(25% of all LSST data) is performed at Lancaster
University and RAL

DEV
• Develop software (to work with LSST Science Pipeline) and services for UK priority science areas

• Produce the in-kind contribution data for the IDAC

LSST:UK Consortium

LSST:UK – DAC-DEV for LSST Near-IR Data Fusion

• wide-field reflecting telescope with a 4.1m mirror, located in Antofagasta, Chile

• fitted with a near-IR camera producing 67 MP images

VISTA

University of Southampton: Elham Saremi, Raphael Shirley, Shenli Tang, Manda Banerji

LSST and HSC: optical

VISTA: Z, Y, J, H and Ks bands

LSST:UK – DAC-DEV for LSST Near-IR Data Fusion

• since no LSST data is available yet, HSC data can be used to develop data fusion

• the LSST Science Pipeline allows “obs” packages to be added so other surveys can
be processed together with HSC data, for which an obs package exists

• VISTA obs package:
• github.com/lsst-uk/obs_vista

• processing repo:
• github.com/lsst-uk/lsst-ir-fusion

• data fusion products to be ingested into IDAC

• products and runs to be backed up to RAL Echo S3
• so far using ~700 TB storage on CSD3

VISTA/HSC Survey Overlap

University of Southampton: Elham Saremi, Raphael Shirley, Shenli Tang, Manda Banerji

Red squares: HSC D/UD patches

Blue squares: VIDEO patches

The Data “Butler”

• part of the LSST Stack

• bespoke database of observations

• used by data processing (DRP and derived products), data transfer (Rucio policy-driven data
synchronisation – Chile/US/UK/France, then beyond), data access services (all DACs)

Butler

Butler datasets (on CSD3)

• large total size (100s of TB)

• millions of small files (20 KB ~ 100 MB)

• deep folder structures (around 3 × more folders than files)

(Near-IR Data Fusion) User working data
• as above, but also occasional large individual files (100s of GB)

Butler Datasets

Butler dataset directory tree structure

• example file (taken at random)

• 8.5 MB (if average(?), 12.3 million files)

• up to 13 folders deep, 240 wide

Other considerations
• a large amount of “data” in the Butler folders on CSD3

are symlinks to another filesystem
• need to follow symlinks to produce complete Butler dataset
• but need to retain knowledge of symlinks to allow dataset to be

restored from backup

• file-count-limited processes are slow: du requires
compute-node CPU time

• avoid hitting storage limit – avoid local I/O

• practical automated backup strategy

good level for
automated
backup

7

tree width

3

tree depth

3

33

~240

~8

1,1,1

1,1

1

2 0

1

2

4

5

6

7

8

9

12

13

1

File Transfer

Why not use Rucio?
• Rucio used by the project generally – attempted for this data by Mathew Sims (STFC)
• however, ideally runs between Rucio endpoints (of which CSD3 is not one)
• expects dedicated, not shared system
• in sub-optimal environment, only Rucio upload client could be used
• registering and checksumming become blocking
• prohibitively slow, > 2s per file, full transfer would take months.

New solution

• combine “basic” upload from CSD3 with registering at RAL

• key outcome: general applicability to HPC → S3 transfer

1. Create (DEV activity)

2. Upload (not clever)

3. Monitor (VM local to Echo
verifies uploads)

4. Register (Butler on the VM)

5. Remove (from CSD3); Echo
holds gold copy

6. Copy, or

7. View data from DAC

Transfer from Login Nodes

Python scripts

• written to use the AWS-developed boto3 library

• simple filesystem traversal

• upload each file to object with the absolute path as name

• fairly easy to make embarrassingly parallel

Other considerations

• required Watchdog exemption

• relatively low bandwidth to Internet

• keep CPU usage low (use ≤4 cores)

• keep memory usage low (how?)

• shared system – be nice ~ 160 MiB/s (1.2 Gbit/s) overall

fo
r 4

 C
PU

s
fo

r 4
 C

PU
s

~ 40 MiB/s (0.3 Gbit/s) per CPU

SKAO – UKSRC to the rescue!

UKSRC DTNs

• Offered testing use of DTN nodes at CSD3 funded by UKSRC – thanks Richard Hughes-Jones et al.

• 2 nodes with 100 Gbit Ethernet links from CSD3 to JANET

• Login-node-like Cascade Lake setup (56 cores, 192 GB RAM (3.4 GB/CPU), direct SSH, MFA)

Note: timings include
establishing a connection for

each file being uploaded.

Mean transfer speed per process for files of a given size, using 4
processes for upload.

• Test runs with dummy data

• High speeds of up to 600
Mibit/s per processes

• 2.3 Gbit/s overall

• But only for the largest files

SKAO – UKSRC to the rescue!

UKSRC DTNs

• Offered testing use of DTN nodes at CSD3 funded by UKSRC – thanks Richard Hughes-Jones et al.

• 2 nodes with 100 Gbit Ethernet links from CSD3 to JANET

• Login-node-like Cascade Lake setup (56 cores, 192 GB RAM (3.4 GB/CPU), direct SSH, MFA)

• Parallel speed-up is good – linear from 1 to 12
CPUs given 64 MiB files

Ultimately, SMALL FILES TRANSFER SLOWLY!

• connection overhead begins to take longer than transfer

• solution – zip on-the-fly

Collating (zipping) small files

Collating small files

• Need to have fewer files to reduce per-file overhead

• Counterintuitively, we want files to be large, so they transfer more quickly – do not use compression

• We can’t write to local disk – zips must fit in memory

• Aim: turn millions of small files into thousands of large files on the fly

Caveats

• The backup at Echo is no longer a mirror of the data on CSD3

• In addition to monitoring, VM at RAL will discover new ZIP files, extract and upload

• Need to check these – use S3 metadata to list zip file contents
• but S3 metadata has a character limit!

• generate *.zip.metadata objects where zip contents list are long.

Collating (zipping) small files

Collating small files

• Need to have fewer files to reduce per-file overhead

• Counterintuitively, we want files to be large, so they transfer more quickly – do not use compression

• We can’t write to local disk – zips must fit in memory

• Aim: turn millions of small files into thousands of large files on the fly

Caveats

• The backup at Echo is no longer a mirror of the data on CSD3

• In addition to monitoring, VM at RAL will discover new ZIP files, extract and upload

• Need to check these – use S3 metadata to list zip file contents
• but S3 metadata has a character limit!

• generate *.zip.metadata objects where zip contents list are long.

From simple multiprocessing to dask distributed

Python Scripts – Developed to use Dask

• Dask offers a simple framework for parallelisation of common Python data engineering tasks
• Pandas-like API for data files

• NumPy-like API for numerical data

• distributed memory (allowing process-parallel tasks shared access)

• scheduled workloads

• visual task-flow dashboard

• Importantly, here:
• built-in profiling

• memory handling

• Pragmatic strategy
• use 24 workers with 2 threads per worker

• loop in shell script at first level with lots of branches

lsst_backup.py – CSD3 side backup script

Running a backup

• Zipping (without compression)
improves transfer rates

• example without zipping:
• 18000 files, 0.5 MiB per file

• ~23 it/s = 11 MiB/s = 0.1 gbps

• 13 minutes

• with zipping (5 MiB size limit):
• 1700 files, 5 MiB per file

• “~250 it/s” = 130 MiB/s = 1 gbps

• 72 seconds

• time spent generating zip files included

• upload speed now depends on zip
size, not original file size

• zip size controlled by single
variable, but remains limited by
folder structure

process_zips DAG – Echo-side Orchestration and Automation

Verifying and extracting zips

• VM local to Echo S3 runs
Apache Airflow on microk8s

• each night, checks S3 buckets
for zip files and extracts
contents

• determines S3 buckets to
scan at runtime from link
below

https://raw.githubusercontent.com/lsst-uk/csd3-echo-somerville/refs/heads/main/echo-side/bucket_names/bucket_names.json

https://raw.githubusercontent.com/lsst-uk/csd3-echo-somerville/refs/heads/main/echo-side/bucket_names/bucket_names.json

Next steps

Configuration testing

• Improve folder traversal to better generalise zip size control
• Determine ideal configurations for DEV users to backup outputs to Echo
• Investigate multithreading vs multiprocessing – simple due to Dask setup – currently introduce more threads if large

files encountered

UK IDAC Ingestion (Somerville)

• Data Butler can ingest from local filesystem or through S3 URI, and can directly ingest zip files

• Do we:
a. download individual files from Echo to Somerville and ingest;

b. download zip files and configure Butler to use them;

c. leave data on Echo and use S3 URIs on Somerville?

• George Beckett

• Bob Mann

• Amanda Ibsen

Acknowledgements

• Timothy Noble

• Mathew Sims

• Alastair Dewhurst

• Manda Banerji

• Raphael Shirley

• Elham Saremi

• Shenli Tang

• Richard Hughes-Jones

• Stuart Rankin

• HPC support

	Slide 1: CSD3 to Echo S3 Data Transfer
	Slide 3: The Vera C. Rubin Telescope and LSST
	Slide 4: The Vera C. Rubin Telescope and LSST
	Slide 5: The Vera C. Rubin Telescope and LSST
	Slide 7: LSST:UK – 16 in-kind Contributions – IDAC, DRP and DEV
	Slide 8: LSST:UK – DAC-DEV for LSST Near-IR Data Fusion
	Slide 9: LSST:UK – DAC-DEV for LSST Near-IR Data Fusion
	Slide 10: The Data “Butler”
	Slide 11: Butler Datasets
	Slide 12: File Transfer
	Slide 13: Transfer from Login Nodes
	Slide 14: SKAO – UKSRC to the rescue!
	Slide 15: SKAO – UKSRC to the rescue!
	Slide 16: Collating (zipping) small files
	Slide 17: Collating (zipping) small files
	Slide 18: From simple multiprocessing to dask distributed
	Slide 19: lsst_backup.py – CSD3 side backup script
	Slide 20: process_zips DAG – Echo-side Orchestration and Automation
	Slide 21: Next steps
	Slide 22: Acknowledgements

