
Graduate Computing Course

Gitanjali Poddar 
6/11/2024

1

Course Outline

2

https://indico.ph.qmul.ac.uk/event/2175/

https://indico.ph.qmul.ac.uk/event/2175/

Part I: Intro to C++

3

4

A First C++ Code

5

• Curly braces are used to denote a
code block

• Statements end with a semicolon

• Comments are marked with //

• Case-sensitive

BASIC SYNTAX

A First C++ Code (II)

Importing header that stores pre-defined functions. 
<iostream> is for input-output functions

Loading namespace to prevent naming conflicts in
large projects

• Without “using namespace std”,
this would have been called as
“std::cout”. It is defined in the
iostream header file.

• << is the insertion operator

• endl is the newline character

6

A First C++ Code (III)

• class keyword to create a class

• public keyword is access specifier. It
specifies that variables and functions are
accessible from outside the class.

• Variables are declared with type (int,
double, float, char, bool, string)
and name.

• Class definition ends with a semicolon

Create object of class and access
variables

7

A First C++ Code (IV)

8

Functions have a return type,
name and list of arguments.
Here,

• int is the return type

• main in function name

• No arguments

Operators

9

Operators Type

++, - - Increment/decrement

+, -, *, /, % Arithmetic

<, <=, >, >=, ==, != Relational

&&, ||, ! Logical

Other operators also exist. These
are the most common ones.

As in Python

Control Statements

10
Other control statements also exist.
These are the most common ones.

As in Python

if-else blocks loops

• break: jump out of loop

• continue: control moves to next iteration of loop

Arrays

11

As in Python

• Used to store multiple values in a single variable

• Arrays are declared by the variable type, name and number of elements in
square brackets

• int num[4]={2,5,8,8};

• string words[2][3]={{“cat”, “mat, “hat”},{“bat”, “fat”,
that”}};

• int numbers[5];
for (int i=0; i<5; i++){
 numbers[i]=10;}

• sizeof() operator can be used to get array size

1) for loops are used to traverse array

2) array indices start at 0

Datatype Modifiers

12

Typical to C++

• Used with built-in data types to modify the length of data stored

• signed: target type will have signed (+/-) representation 
unsigned: target type will have unsigned representation 
short: target type will have at least 16 bits 
long: target type will have at least 32 bits

Data Type Size (in bytes) Range

short int 2 -32768 to 32767

unsigned short int 2 0 to 65535

long long int 8 -263 to 263-1

unsigned char 1 0 to 255

References and Pointers

13

Typical to C++

• A reference to a variable is created using the & operator 
 
string particle=“up”;
string &quark=particle;

cout<<particle<<endl;
cout<<quark<<endl;
cout<<&particle<<endl;

What do they output?

References and Pointers

14

Typical to C++

• A reference to a variable is created using the & operator 
 
string particle=“up”;
string &quark=particle;

cout<<particle<<endl; gives “up”
cout<<quark<<endl; gives “up”
cout<<&particle<<endl; gives 0c6ed54 (memory address of the variable) 

• Pointer is a variable that stores memory address. It has the same data type as the
variable and created with * operator 
 
string particle=“up”;
string *ptr=&particle;
cout<<ptr<<endl; gives 0c6ed54

cout<<*ptr<<endl;
*ptr=“down”;
cout<<*ptr<<endl;
cout<<particle<<endl;

What do they output?

References and Pointers

15

Typical to C++

• A reference to a variable is created using the & operator 
 
string particle=“up”;
string &quark=particle;

cout<<particle<<endl; gives “up”
cout<<quark<<endl; gives “up”
cout<<&particle<<endl; gives 0c6ed54 (memory address of the variable) 

• Pointer is a variable that stores memory address. It has the same data type as the
variable and created with * operator 
 
string particle=“up”;
string *ptr=&particle;
cout<<ptr<<endl; gives 0c6ed54

cout<<*ptr<<endl; gives “up”
*ptr=“down”;
cout<<*ptr<<endl; gives “down"
cout<<particle<<endl; gives “down”

References and Pointers

16

Typical to C++

• A reference to a variable is created using the & operator 
 
string particle=“up”;
string &quark=particle;

cout<<particle<<endl; gives “up”
cout<<quark<<endl; gives “up”
cout<<&particle<<endl; gives 0c6ed54 (memory address of the variable) 

• Pointer is a variable that stores memory address. It has the same data type as the
variable and created with * operator 
 
string particle=“up”;
string *ptr=&particle;
cout<<ptr<<endl; gives 0c6ed54

cout<<*ptr<<endl; gives “up”
*ptr=“down”;
cout<<*ptr<<endl; gives “down"
cout<<particle<<endl; gives “down”

References and pointers give the ability to manipulate data in
computer’s memory, which can reduce the code and improve
performance

Summary

17

• C++ is an object oriented programming language

• Typical typos: missing semi-colon, case-sensitive..

• Variables, functions, arrays are declared by data type and name

• Typical to C++:

• Data modifiers that change the range/length of built-in data types

• References and pointers that access computer’s memory

Part I: Intro to ROOT

18

Introduction

19

• Framework developed at CERN for

• data visualisation: graphs, histograms, trees

• data analysis: statistical tools (RooStats, RooFit), multivariate analysis (TMVA)

• data storage: store any C++ object

• Based on C++

• Python bindings are provided (PyROOT)

• ROOT:

• Install locally: https://root.cern/install/

• Use remote machines: CERN cluster, SWAN notebooks, etc

https://root.cern/install/

First Steps

20

To launch ROOT

To quit ROOT

Data Types

21

• Storage space for standard data types like int, bool, char, etc depend
on machine and compiler. ROOT data types are machine independent.

• First letter is capitalised and ends with “_t” 
 
 int Int_t float Float_t double Double_t→ → →

Signed Unsigned Size (in bytes)

Char_t UChar_t 1

Short_t UShort_t 2

Int_t UInt_t 4

Long64_t ULong64_t 8

Float_t 4

Double_t 8

Double32_t

Takeaway: You can use int or Int_t, but the latter is preferable

Classes

22

• All classes start with a ’T’ (type)

• TString: class to handle strings. It has more features than
std::string. Note: no String_t in ROOT

• TH*: class to handle 1D, 2D and 3D histograms

• TTree: class to handle large datasets

• TObject: class to handle objects

• TFile: class to handle files

• TDirectory: class to handle directory like structure of files

These are some common classes only

Classes (II)

23

• Dot: used to access members of objects 
 
 
 
 

• Arrow: used to access members of pointers to objects 

Typical syntax:

class_name object_name (arguments)
class_name *object_name = new class_name (arguments)

Declaring object

Declaring object 
pointer

https://root.cern.ch/doc/master/classTString.html

https://root.cern.ch/doc/master/classTString.html

Histograms

24

• TH* classes represents histograms

• TH1* and TH2* represents 1-dimensional and 2-dimensional histograms

• The final letter represents the variable type stored in each histogram. Eg:
TH1D is double, TH2F is float

Object name Key name Title name nbins xmin xmax

Declaring histogram

Filling histogram

Filling histogram with weight

Drawing histogram

Typical syntax:

class_name object_name (arguments)

https://root.cern.ch/doc/master/classTH1.html

https://root.cern.ch/doc/master/classTH1.html

Histograms (II)

25

Title Name Key Name

File: Input

26

Object name File name

Writing/saving object to file

Closing file

• “RECREATE”: create a ROOT file, replacing it if it already exists

• “CREATE” or “NEW”: create a ROOT file

• “UPDATE”: updates the ROOT file

• “READ”: opens an existing ROOT file for reading

Typical syntax:

class_name object_name (arguments)

https://root.cern.ch/doc/master/classTFile.html

https://root.cern.ch/doc/master/classTFile.html

File: Read

27

Typical syntax:

class_name object_name (arguments)

Reading file

Inspecting contents of file

Printing object in file

Directory

28

TFile behaves like file system, inheriting methods from TDirectory

Making directory

Changing directory

https://root.cern.ch/doc/master/classTDirectory.html

https://root.cern.ch/doc/master/classTDirectory.html

Objects

29

• Mother of all ROOT objects (histograms, trees, n-tuples..)

• Common functions used frequently:

• Draw: to visualise the object

• Print: to print contents of the object

• Write: to save contents of the object

• Clone: to copy contents of the object. This is also one of the ways to
create an object.

Trees

30

• It is made of branches (sub-directories) that can correspond to the different
variables

• Print(“all”): print all branches of the tree

Printing contents of tree

Branches of tree

https://root.cern.ch/doc/master/classTTree.html

https://root.cern.ch/doc/master/classTTree.html

Trees (II)

31

• It is made of rows that can correspond to the different entries

• Scan(“branch_name”): print rows of branch name

Scan multiple variables
at same time Make cut on variables

Exercise

32

• Open “signal.root”

• List its contents

• Plot any one of the histograms

• Print contents of tree

• Scan any branch of the tree

• Scan any two branches of the tree

• Quit ROOT

Feel free to play around with the file!

Solutions

33

• Open “signal.root”: root -l signal.root

• List its contents: .ls

• Plot any one of the histograms: cossphericity->Draw()

• Print contents of tree: selectedtree->Print(“all”)

• Scan any branch of the tree: selectedtree->Scan("pi0pi0Tagger")

• Scan any two branches of the tree: 
selectedtree->Scan(“pi0pi0Tagger:rhoPiFisher")

• Quit ROOT: .q

Macros

34

• The standard procedure is to write code in macros/scripts and then run it. 
Note: ‘;’ can be ignored when working with ROOT on shell, but not in macros

• To run a macro:

• root -l Signal_Macro.C

• root
.x Signal_Macro.C

Macros (II)

35

Standard C++ header and namespace

Import ROOT classes

Note: can be imported with <TClass.h> or “TClass.h”

main function has same name as macro

Note: use of . or -> depending on object or pointer

Macros (II)

36

Object type
Pointer

Cast the returned pointer
as the type you want it

Use key name

Function of TDirectoryFile

Setting pointer to current directory

Note: standard syntax to extract TObject from a file

Macros (III)

37

Set branch to fill local variable

GetEntries(): number of entries in tree 
 
GetEntry(i): load i-th entry into local variables

Note: use of int or Float_t, both are okay

Summary

38

• ROOT is a data processing framework

• It has its in-built classes and data types. Eg: TFile, Double_t, etc.  
Reference documentation on CERN ROOT pages

• Tip: as first step, better to follow existing code and work on it..

