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Part I: Intro to C++
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A First C++ Code
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• Curly braces are used to denote a 
code block


• Statements end with a semicolon


• Comments are marked with // 

• Case-sensitive 

BASIC SYNTAX



A First C++ Code (II)

Importing header that stores pre-defined functions. 
<iostream> is for input-output functions

Loading namespace to prevent naming conflicts in 
large projects

• Without “using namespace std”, 
this would have been called as 
“std::cout”. It is defined in the 
iostream header file. 


• << is the insertion operator


• endl is the newline character
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A First C++ Code (III)

• class keyword to create a class


• public keyword is access specifier. It 
specifies that variables and functions are 
accessible from outside the class. 


• Variables are declared with type (int, 
double, float, char, bool, string) 
and name.


• Class definition ends with a semicolon

Create object of class and access 
variables
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A First C++ Code (IV)
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Functions have a return type, 
name and list of arguments. 
Here,


• int is the return type

• main in function name

• No arguments



Operators
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Operators Type

++, - - Increment/decrement

+, -, *, /, % Arithmetic

<, <=, >, >=, ==, != Relational

&&, ||, ! Logical

Other operators also exist. These 
are the most common ones.

As in Python



Control Statements
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Other control statements also exist. 
These are the most common ones.

As in Python

if-else blocks loops

• break: jump out of loop


• continue: control moves to next iteration of loop



Arrays
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As in Python

• Used to store multiple values in a single variable


• Arrays are declared by the variable type, name and number of elements in 
square brackets


• int num[4]={2,5,8,8}; 

• string words[2][3]={{“cat”, “mat, “hat”},{“bat”, “fat”, 
that”}}; 

• int numbers[5]; 
for (int i=0; i<5; i++){ 
        numbers[i]=10;} 

• sizeof() operator can be used to get array size

1) for loops are used to traverse array

2) array indices start at 0



Datatype Modifiers
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Typical to C++

• Used with built-in data types to modify the length of data stored


• signed: target type will have signed (+/-) representation 
unsigned: target type will have unsigned representation 
short: target type will have at least 16 bits 
long: target type will have at least 32 bits  

Data Type Size (in bytes) Range

short int 2 -32768 to 32767

unsigned short int 2 0 to 65535

long long int 8 -263 to 263-1

unsigned char 1 0 to 255



References and Pointers
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Typical to C++

• A reference to a variable is created using the & operator 
 
string particle=“up”; 
string &quark=particle; 
 
cout<<particle<<endl;  
cout<<quark<<endl;  
cout<<&particle<<endl;

What do they output?



References and Pointers
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Typical to C++

• A reference to a variable is created using the & operator 
 
string particle=“up”; 
string &quark=particle; 
 
cout<<particle<<endl; gives “up” 
cout<<quark<<endl; gives “up” 
cout<<&particle<<endl; gives 0c6ed54 (memory address of the variable) 

• Pointer is a variable that stores memory address. It has the same data type as the 
variable and created with * operator 
 
string particle=“up”; 
string *ptr=&particle; 
cout<<ptr<<endl; gives 0c6ed54 
 
cout<<*ptr<<endl;  
*ptr=“down”; 
cout<<*ptr<<endl;  
cout<<particle<<endl;

What do they output?



References and Pointers
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Typical to C++

• A reference to a variable is created using the & operator 
 
string particle=“up”; 
string &quark=particle; 
 
cout<<particle<<endl; gives “up” 
cout<<quark<<endl; gives “up” 
cout<<&particle<<endl; gives 0c6ed54 (memory address of the variable) 

• Pointer is a variable that stores memory address. It has the same data type as the 
variable and created with * operator 
 
string particle=“up”; 
string *ptr=&particle; 
cout<<ptr<<endl; gives 0c6ed54 
 
cout<<*ptr<<endl; gives “up” 
*ptr=“down”; 
cout<<*ptr<<endl; gives “down" 
cout<<particle<<endl; gives “down”



References and Pointers
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Typical to C++

• A reference to a variable is created using the & operator 
 
string particle=“up”; 
string &quark=particle; 
 
cout<<particle<<endl; gives “up” 
cout<<quark<<endl; gives “up” 
cout<<&particle<<endl; gives 0c6ed54 (memory address of the variable) 

• Pointer is a variable that stores memory address. It has the same data type as the 
variable and created with * operator 
 
string particle=“up”; 
string *ptr=&particle; 
cout<<ptr<<endl; gives 0c6ed54 
 
cout<<*ptr<<endl; gives “up” 
*ptr=“down”; 
cout<<*ptr<<endl; gives “down" 
cout<<particle<<endl; gives “down”

References and pointers give the ability to manipulate data in 
computer’s memory, which can reduce the code and improve 
performance 



Summary
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• C++ is an object oriented programming language


• Typical typos: missing semi-colon, case-sensitive.. 


• Variables, functions, arrays are declared by data type and name 

• Typical to C++:


• Data modifiers that change the range/length of built-in data types


• References and pointers that access computer’s memory



Part I: Intro to ROOT
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Introduction
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• Framework developed at CERN for 


• data visualisation: graphs, histograms, trees


• data analysis: statistical tools (RooStats, RooFit), multivariate analysis (TMVA)


• data storage: store any C++ object 

• Based on C++


• Python bindings are provided (PyROOT)


• ROOT:


• Install locally: https://root.cern/install/


• Use remote machines: CERN cluster, SWAN notebooks, etc

https://root.cern/install/


First Steps
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To launch ROOT

To quit ROOT



Data Types
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• Storage space for standard data types like int, bool, char, etc depend 
on machine and compiler. ROOT data types are machine independent. 


• First letter is capitalised and ends with “_t” 
 
     int Int_t        float Float_t    double Double_t→ → →

Signed Unsigned Size (in bytes)

Char_t UChar_t 1

Short_t UShort_t 2

Int_t UInt_t 4

Long64_t ULong64_t 8

Float_t 4

Double_t 8

Double32_t

Takeaway: You can use int or Int_t, but the latter is preferable



Classes
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• All classes start with a ’T’ (type)


• TString: class to handle strings. It has more features than 
std::string. Note: no String_t in ROOT 


• TH*: class to handle 1D, 2D and 3D histograms 


• TTree: class to handle large datasets


• TObject: class to handle objects


• TFile: class to handle files


• TDirectory: class to handle directory like structure of files

These are some common classes only



Classes (II)
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• Dot: used to access members of objects 
 
 
 
 

• Arrow: used to access members of pointers to objects 

Typical syntax:

class_name object_name (arguments) 
class_name *object_name = new class_name (arguments)

Declaring object

Declaring object 
pointer

https://root.cern.ch/doc/master/classTString.html

https://root.cern.ch/doc/master/classTString.html


Histograms
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• TH* classes represents histograms


• TH1* and TH2* represents 1-dimensional and 2-dimensional histograms


• The final letter represents the variable type stored in each histogram. Eg: 
TH1D is double, TH2F is float

Object name Key name Title name nbins xmin xmax

Declaring histogram

Filling histogram

Filling histogram with weight

Drawing histogram

Typical syntax:

class_name object_name (arguments)

https://root.cern.ch/doc/master/classTH1.html

https://root.cern.ch/doc/master/classTH1.html


Histograms (II)
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Title Name Key Name



File: Input
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Object name File name

Writing/saving object to file

Closing file

• “RECREATE”: create a ROOT file, replacing it if it already exists


• “CREATE” or “NEW”: create a ROOT file


• “UPDATE”: updates the ROOT file


• “READ”: opens an existing ROOT file for reading

Typical syntax:

class_name object_name (arguments)

https://root.cern.ch/doc/master/classTFile.html

https://root.cern.ch/doc/master/classTFile.html


File: Read
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Typical syntax:

class_name object_name (arguments)

Reading file

Inspecting contents of file

Printing object in file



Directory
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TFile behaves like file system, inheriting methods from TDirectory

Making directory

Changing directory

https://root.cern.ch/doc/master/classTDirectory.html

https://root.cern.ch/doc/master/classTDirectory.html


Objects
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• Mother of all ROOT objects (histograms, trees, n-tuples..)


• Common functions used frequently:


• Draw: to visualise the object


• Print: to print contents of the object


• Write: to save contents of the object


• Clone: to copy contents of the object. This is also one of the ways to 
create an object. 



Trees
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• It is made of branches (sub-directories) that can correspond to the different 
variables


• Print(“all”): print all branches of the tree

Printing contents of tree

Branches of tree

https://root.cern.ch/doc/master/classTTree.html

https://root.cern.ch/doc/master/classTTree.html


Trees (II)
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• It is made of rows that can correspond to the different entries


• Scan(“branch_name”): print rows of branch name

Scan multiple variables 
at same time Make cut on variables



Exercise
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• Open “signal.root”


• List its contents


• Plot any one of the histograms


• Print contents of tree


• Scan any branch of the tree


• Scan any two branches of the tree


• Quit ROOT

Feel free to play around with the file!



Solutions
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• Open “signal.root”: root -l signal.root 

• List its contents: .ls 

• Plot any one of the histograms: cossphericity->Draw() 

• Print contents of tree: selectedtree->Print(“all”) 

• Scan any branch of the tree: selectedtree->Scan("pi0pi0Tagger") 

• Scan any two branches of the tree: 
selectedtree->Scan(“pi0pi0Tagger:rhoPiFisher") 

• Quit ROOT: .q



Macros
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• The standard procedure is to write code in macros/scripts and then run it. 
Note: ‘;’ can be ignored when working with ROOT on shell, but not in macros


• To run a macro:


• root -l Signal_Macro.C 

• root 
.x Signal_Macro.C 



Macros (II)

35

Standard C++ header and namespace

Import ROOT classes

Note: can be imported with <TClass.h> or “TClass.h”

main function has same name as macro

Note: use of . or -> depending on object or pointer



Macros (II)
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Object type
Pointer

Cast the returned pointer 
as the type you want it 

Use key name

Function of TDirectoryFile

Setting pointer to current directory

Note: standard syntax to extract TObject from a file



Macros (III)
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Set branch to fill local variable

GetEntries(): number of entries in tree 
 
GetEntry(i): load i-th entry into local variables 

Note: use of int or Float_t, both are okay



Summary
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• ROOT is a data processing framework 


• It has its in-built classes and data types. Eg: TFile, Double_t, etc.  
Reference documentation on CERN ROOT pages


• Tip: as first step, better to follow existing code and work on it..


