
Graduate Computing Course

Gitanjali Poddar 
31/10/2024

1

Course Outline

2

https://indico.ph.qmul.ac.uk/event/2175/

https://indico.ph.qmul.ac.uk/event/2175/

Part I: Intro to Unix/Linux

3

Command or Terminal Shell

4

A shell is a user interface for access to an operating system’s services

Command Prompt

Directory Management

5

Basic idea of a path: home/directory1/directory2/directory3

/ is the directory separator

• pwd: print current directory path

• ls: list all contents of current directory

• mkdir <dir>: create a directory <dir>

• cd <dir>: change to directory <dir>

• cd ..: change to one directory level back 
cd ../..: change to two directory levels back  
 
Note: use this command iteratively to go back as many levels as desired

Exercise

6

Question 1: currently in Dir4,
how do you go to Dir3?

Exercise

7

Question 1: currently in Dir4,
how do you go to Dir3?

Answer: cd ../../Dir1/Dir3

Question 2: currently in Dir3,
how do you go Home?

Exercise

8

Answer: cd ../../ or cd

Question 2: currently in Dir3,
how do you go Home?

cd: return to home directory

Directory Management II

9

• mv <dir> <path>: move directory <dir> to said <path>

• cp -r <dir> <path>: copy directory <dir> to said <path>

• rm -rf <dir>: remove <dir> permanently

Exercise II

10

Question 1: currently in Home,
how do you move Dir5 to Home?

Exercise II

11

Question 1: currently in Home,
how do you move Dir5 to Home?

Answer: mv Dir2/Dir5 .

. denotes current directory

Question 2: currently in Home,
how do you rename Dir5 to Dir7?

Exercise II

12

Answer: mv Dir5 Dir7
mv can be used to rename
directories

Question 2: currently in Home,
how do you rename Dir5 to Dir 7?

Question 3: currently in Home,
how do you copy Dir7 in Dir3?

Exercise II

13

Answer: cp -r Dir7 Dir1/Dir3

Note: unlike mv, cp keeps a copy of
the folder

Question 3: currently in Home,
how do you copy Dir7 in Dir3?

Text Editor

14

• vi <file>: if <file> exists, it will be opened and if not, it will be created

• Press i to enter insert mode to edit the file

• Press Esc to enter command mode to quit the file

• :wq: to save changes and quit

• :q!: to not save changes and quit

Default text editor: vi (visual editor)

File Management

15

• mv <file> <path>: move <file> to said <path>

• cp <file> <path>: copy <file> to said <path>

• cat <file>: print entire <file> on screen

• head -n <file>: print first n lines of <file> on screen

• tail -n <file>: print last n lines of <file> on screen

• rm <file>: delete <file> permanently

Archiving Files

16

• tar <options> <file> <dir>: make <dir> into a tarball <file>

• tar <options> <file>: unpack tarball <file>  

• c: create a tarball

• x: extract from a tarball

• v: verbose (print out files added/extracted from tarball)

• f: file (it should be followed by the name of the tarball)

A tarball is a set of directories and/or files collected into a

single file for distribution or backup purposes

Compressing Files

17

• ls -lh <file>: to show file size in Kb/Mb/Gb

• gzip <file>: compress <file>

• gunzip <file>: unzip <file>

It is sometimes necessary to compress/zip files to save space

Secure Shell (SSH)

18

Enables communication with remote
computers, e.g: at CERN, Fermilab etc

• ssh <username+domain>: log on to remote server

• logout: exit remote server

• scp -r <local:path> <username+domain:path>: transfer <file> in
local path to remote server path

• scp -r <username+domain:path> <local:path>: transfer <file> in
remote server path to local path

Summary

19

• Managing files and directories follows a tree structure- the more you use
these commands, you’ll get a hang of it! Caution: removing a file or directory
deletes it forever

• Text editors: vi, emacs, nano, etc. See what works for you!

• Archiving and zipping is important to save space and share files with
collaborators

• A lot of work you do will be on remote servers. SSH commands are key!

• Tip: use TAB command to autocomplete commands, filenames or directory
names! use up and down arrow keys to re-use command prompts!

• Much more documentation online!

Part II: Intro to Git

20

Git

21

Git is a version control used to track changes to files

Working Directory
(current project

version)

Git Repository
(contains all project

versions)

Advantage: can revert to any project version in working directory if necessary

save version

Creating Git Repository

22

Working Directory Git Repository

git init: creates Git repository

Saving To Git Repository

23

Working Directory Git Repository

1. git add <file>: put file in working directory to staging area

2. git commit -m “message”: put files in staging area to Git repository

Staging Area
add commit

Note: repeat add+commit for every change in working directory

Reverting From Git Repository

24

Working Directory Git Repository

1. git log: shows history of every commit made

2. git checkout <commit number>: revert to desired version in working directory

checkout

GitLab

25

Working Directory Git Repository

GitLab (or GitHub or BitBucket): online website to store local Git repository

Staging Area GitLab Repository

Local Remote

Advantage: 1) can access files anywhere 2) can work with collaborators

Connecting Git to GitLab

26

Git Repository GitLab Repository

Local Remote

1. Create project on GitLab

2. git remote add origin <server>: connecting local Git repository to
online <server> repository

Branch

27

• The main/master branch is the default branch when you create a repository

• Use other branches for development and merge them back to the main/master
branch if desired

Branch (II)

28

• git branch: all branch names (current branch is marked with *)

• git checkout -b <branch-name>: creating <branch-name> and
switching to it

• git checkout <branch-name>: switching to <branch-name>

Saving to GitLab Repository

29

git push origin <branch-name>: put <branch-name> to GitLab repository

Git Repository GitLab Repository

Local Remote

push

Saving to Working Directory

30

git pull origin <branch-name>: save <branch-name> to working directory

Working Directory GitLab Repository

Local Remote

pull

Summary

31

Working Directory Git Repository Staging Area

GitLab Repository

add commit

push

pull

Note: changes can be made in GitLab Repository or
Working Directory keep them in sync always!→

Cloning

32

git clone <url>: clone remote GitLab repository <url>

Working Directory GitLab Repository

Local Remote

clone

Advantage: no need to start a project from scratch

Cloning vs Pulling

33

Working Directory GitLab Repository

Local Remote

clone

pull

git clone git pull

Copies all files to the working directory Copies only modified files to the  
working directory

Creates a connection between online
repository and working directory

Requires a connection to have been
made already

Typically used once Typically used multiple times

Setup

34

• Check if git is installed: git - -version in shell 
(Download link: https://git-scm.com/)

• Set up git configuration: 
git config --global user.name “Gitanjali Poddar”
git config --global user.email gitanjali.poddar@cern.ch

• Create GitHub/GitLab account (https://github.com/)

https://git-scm.com/
https://github.com/

Questions?

35

