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Course Outline
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https://indico.ph.qmul.ac.uk/event/2175/

https://indico.ph.qmul.ac.uk/event/2175/


Part I: Intro to Unix/Linux
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Command or Terminal Shell

4

A shell is a user interface for access to an operating system’s services

Command Prompt



Directory Management
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Basic idea of a path: home/directory1/directory2/directory3

/ is the directory separator

• pwd: print current directory path


• ls: list all contents of current directory


• mkdir <dir>: create a directory <dir>


• cd <dir>: change to directory <dir> 

• cd ..: change to one directory level back 
cd ../..: change to two directory levels back  
 
Note: use this command iteratively to go back as many levels as desired



Exercise
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Question 1: currently in Dir4, 
how do you go to Dir3?



Exercise
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Question 1: currently in Dir4, 
how do you go to Dir3?

Answer: cd ../../Dir1/Dir3

Question 2: currently in Dir3, 
how do you go Home?



Exercise
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Answer: cd ../../ or cd

Question 2: currently in Dir3, 
how do you go Home?

cd: return to home directory



Directory Management II
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• mv <dir> <path>: move directory <dir> to said <path>


• cp -r <dir> <path>: copy directory <dir> to said <path>


• rm -rf <dir>: remove <dir> permanently



Exercise II
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Question 1: currently in Home, 
how do you move Dir5 to Home?



Exercise II
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Question 1: currently in Home, 
how do you move Dir5 to Home?

Answer: mv Dir2/Dir5 .

. denotes current directory 

Question 2: currently in Home, 
how do you rename Dir5 to Dir7?



Exercise II
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Answer: mv Dir5 Dir7
mv can be used to rename 
directories

Question 2: currently in Home, 
how do you rename Dir5 to Dir 7?

Question 3: currently in Home, 
how do you copy Dir7 in Dir3?



Exercise II
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Answer: cp -r Dir7 Dir1/Dir3

Note: unlike mv, cp keeps a copy of 
the folder

Question 3: currently in Home, 
how do you copy Dir7 in Dir3?



Text Editor
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• vi <file>: if <file> exists, it will be opened and if not, it will be created


• Press i to enter insert mode to edit the file


• Press Esc to enter command mode to quit the file


• :wq: to save changes and quit


• :q!: to not save changes and quit

Default text editor: vi (visual editor)



File Management
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• mv <file> <path>: move <file> to said <path>


• cp <file> <path>: copy <file> to said <path> 

• cat <file>: print entire <file> on screen


• head -n <file>: print first n lines of <file> on screen


• tail -n <file>: print last n lines of <file> on screen


• rm <file>: delete <file> permanently



Archiving Files
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• tar <options> <file> <dir>: make <dir> into a tarball <file> 


• tar <options> <file>: unpack tarball <file>  

• c: create a tarball


• x: extract from a tarball


• v: verbose (print out files added/extracted from tarball)


• f: file (it should be followed by the name of the tarball)

A tarball is a set of directories and/or files collected into a

single file for distribution or backup purposes



Compressing Files
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• ls -lh <file>: to show file size in Kb/Mb/Gb 


• gzip <file>: compress <file> 


• gunzip <file>: unzip <file> 

It is sometimes necessary to compress/zip files to save space



Secure Shell (SSH)
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Enables communication with remote 
computers, e.g: at CERN, Fermilab etc

• ssh <username+domain>: log on to remote server 


• logout: exit remote server


• scp -r <local:path> <username+domain:path>: transfer <file> in 
local path to remote server path


• scp -r <username+domain:path> <local:path>: transfer <file> in 
remote server path to local path



Summary
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• Managing files and directories follows a tree structure- the more you use 
these commands, you’ll get a hang of it! Caution: removing a file or directory 
deletes it forever


• Text editors: vi, emacs, nano, etc. See what works for you!


• Archiving and zipping is important to save space and share files with 
collaborators


• A lot of work you do will be on remote servers. SSH commands are key!


• Tip: use TAB command to autocomplete commands, filenames or directory 
names! use up and down arrow keys to re-use command prompts!


• Much more documentation online!



Part II: Intro to Git
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Git
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Git is a version control used to track changes to files

Working Directory 
(current project 

version)

Git Repository  
(contains all project 

versions)

Advantage: can revert to any project version in working directory if necessary

save version



Creating Git Repository
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Working Directory Git Repository 

git init: creates Git repository



Saving To Git Repository
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Working Directory Git Repository 

1. git add <file>: put file in working directory to staging area


2. git commit -m “message”: put files in staging area to Git repository

Staging Area
add commit

Note: repeat add+commit for every change in working directory



Reverting From Git Repository
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Working Directory Git Repository 

1. git log: shows history of every commit made


2. git checkout <commit number>: revert to desired version in working directory 

checkout



GitLab
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Working Directory Git Repository 

GitLab (or GitHub or BitBucket): online website to store local Git repository

Staging Area GitLab Repository 

Local Remote

Advantage: 1) can access files anywhere 2) can work with collaborators



Connecting Git to GitLab
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Git Repository GitLab Repository 

Local Remote

1. Create project on GitLab 

2. git remote add origin <server>: connecting local Git repository to 
online <server> repository 



Branch
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• The main/master branch is the default branch when you create a repository


• Use other branches for development and merge them back to the main/master 
branch if desired



Branch (II)
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• git branch: all branch names (current branch is marked with *) 


• git checkout -b <branch-name>: creating <branch-name> and 
switching to it


• git checkout <branch-name>: switching to <branch-name>



Saving to GitLab Repository
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git push origin <branch-name>: put <branch-name> to GitLab repository

Git Repository GitLab Repository 

Local Remote

push



Saving to Working Directory
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git pull origin <branch-name>: save <branch-name> to working directory

Working Directory GitLab Repository 

Local Remote

pull



Summary
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Working Directory Git Repository Staging Area

GitLab Repository 

add commit

push

pull

Note: changes can be made in GitLab Repository or 
Working Directory  keep them in sync always!→



Cloning
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git clone <url>: clone remote GitLab repository <url>

Working Directory GitLab Repository 

Local Remote

clone

Advantage: no need to start a project from scratch



Cloning vs Pulling
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Working Directory GitLab Repository 

Local Remote

clone

pull

git clone git pull

Copies all files to the working directory Copies only modified files to the  
working directory

Creates a connection between online 
repository and working directory

Requires a connection to have been 
made already

Typically used once Typically used multiple times



Setup
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• Check if git is installed: git - -version in shell 
(Download link: https://git-scm.com/)


• Set up git configuration: 
git config --global user.name “Gitanjali Poddar” 
git config --global user.email gitanjali.poddar@cern.ch 

• Create GitHub/GitLab account (https://github.com/)

https://git-scm.com/
https://github.com/


Questions?
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