



#### **Swiss National Science Foundation**

### EnHzürich

### Hunting Dark Matter in a Hidden Valley

Annapaola de Cosa ETH Zurich



### Outlook

- Dark Matter: status of the art of searches at colliders
  - The quest for strongly-coupled Dark Matter
- Novel experimental signatures to probe
- Novel techniques to search for DM and new physics

### The Standard Model of Particle Physics





### The Standard Model of Particle Physics



#### Numerous questions cannot find an explanation in the SM framework

- Can we fit gravity in the SM?
- Why are there three generations?
- What is the origin of particle mass hierarchy?
- Why do matter and antimatter behave differently?
- What is Dark Matter made of?



### What about Dark Matter?





Gravitational lensing



#### What's Dark Matter nature?

### Beyond the Standard Model



#### **Dark Matter**





# DM quest - Experimental landscape





#### **Direct detection**

• DM-nucleon scattering

#### **Indirect detection**

• DM annihilation products



#### **Particle colliders**

Direct production of DM





## DM quest - Theory landscape



Illustration by Sandbox Studio, Chicago with Ana Kova

### DM Quest - Where do we stand



#### WIMPs widely excluded. Need for:

New theoretical models New experimental techniques



Novel theoretical models



### What if DM is hiding in a Hidden Valley?



#### **Hidden Valley**







# Looking for DM in a Hidden Valley

#### **Hidden Valleys:**

Class of theories predicting an Hidden Sector secluded from the SM



- Hidden Valleys very weakly coupled to the SM
- What makes the Hidden Sector?
  - Pletora of possibilities!
  - Here focus on Strongly coupled Hidden Sectors





12

# Strongly coupled Hidden Sectors



Annapaola de Cosa -ETHZ







### The quest for DM at particle colliders.



#### **The Large Hadron Collider**

- 27 Km circumference
- Proton-proton collisions at a centre of mass energy of **14 TeV**



## The quest for DM at particle colliders



#### **The Large Hadron Collider**

- 27 Km circumference
- Proton-proton collisions at a centre of mass energy of **14 TeV**



#### **Compact Muon Solenoid** (CMS) experiment









### How can we see quarks?



#### **Quarks confined into hadrons by strong interaction:**

- cannot be observed directly
- give rise to a jet of collimated hadrons







### How can we see invisible particles?

#### Invisible particles = not reconstructable

#### Momentum carried out by invisible particles quantified by an **energy imbalance (MET)** in the event collision products



Annapaola de Cosa -ETHZ











### Semivisible Jets

Semivisible Jets (SVJs) are an exotic signature arising in a class of strongly coupled Hidden Sectors

- **Dark quarks hadronise** in the dark sector (dark QCD)
  - **Unstable dark mesons** decay to visible particles
  - Stable dark mesons remain invisible
- **Challenging experimental signature:** 
  - Partially visible jets of particles (**Semivisible jets**)
  - Missing momentum collinear to visible jets







### How much invisible?

The jet topology spans from fully visible to fully invisible based on the ratio between stable and unstable dark bound states



**SM-like** 

Annapaola de Cosa -ETHZ





### Why it's so interesting?

#### **Unexplored territory:**

- SVJs data data lay in a region discarded by common searches
- Overwhelming instrumental **background** (Multijet)
- Complex event topology











## Diving into the jet

#### Look inside the jet

- **Underlying interaction** affects the hadronization process
- **Dedicated algorithms** enable investigation of dark jets



#### **Semivisible jets identification** algorithm





CMS-EXO-19-020



### Reconstruct the mediator

1.(approximately) reconstruct the mediator mass (M<sub>T</sub>) from visible jets and MET

$$M_T^2 = M_{jj}^2 + 2\left(\sqrt{M_{jj}^2 + p_{T,jj}^2 p_T^{miss}} - \vec{p}_{T,jj} \cdot \vec{p}_T^{miss}\right)$$



Annapaola de Cosa -ETHZ

#### If dark quarks are produced in a resonant model, we can:

#### 2.And exploit MT vs MET balance!



#### CMS-EXO-19-020



## Wide phase space coverage

#### Jet Identifier proved to be key to probe Semivisible Jets

 Improvement in sensitivity by almost a factor 10

### **Observed exclusions** (maximum range)

- $1.50 < m_{Z'} < 5.10 \text{ TeV}$
- $0.01 < r_{inv} < 0.77$







CMS-EXO-19-020



23

## Expanding the territory ...

... to novel, uncovered signatures with leptons or photons within the SVJs











### Lepton-enriched SVJs

**Original SVJs models do not allow** decays to leptons (leptophbic Z' portal)

New models including decays to leptons:

- **SVJ** $\ell$ : democratic decay to leptons allows by double messanger model (Z' plus A')
- **SVJ** $\tau$ : enhanced decay to 3rd lepton generation
- Sensitivity of existing searches very limited to SVJ models with leptons

Eur. Phys. J. C 82, 793 (2022) - C.Cazzaniga, <u>A.de</u> Cosa Eur. Phys. J. C 83, 599 (2023) - H. Beauchesne, C. Cazzaniga, A. de Cosa, C. Doglioni, T. Fitschen, G. Grilli di Cortona, Z. Zhou



Tau final state: additional MET from neutrinos





25

### Identifying SVJl and SVJ $\tau$

**Experimental handles: inter-isolation and di-lepton mass** 

• Large number of nearby leptons in signal jets

**Relative inter-isolation:** 
$$I_{int,\ell} = \frac{1}{p_{T,\ell}} \sum_{r}^{\Delta R, R_{max}^{iso}} p_{T,\ell}$$

• Lepton-based substructure (\*) variables



 Di-lepton mass inside jets expected to peak around dark meson





# Identifying SVJL and SVJT

SVJ $\tau$  are harder to catch due to decay modes variety and neutrino presence









Annapaola de Cosa -ETHZ

#### **Expected sensitivity for an ad hoc SVJ** $\tau$ **search**



Possible extension using alternative online data selection strategies





#### **Dark and SM sectors communicate** via a Z' boson and a pseudo scalar ALP

- stable
- Signature: hadronic jet with photons and missing momentum aligned



**ISOCURVES FOR**  $BR_{\gamma} = BR_{had} = 0.5$ 







### Inefficiency of standard searches

#### Searches based on jets or photon final states are insensitive to SVJ $\gamma$



#### **Jets-based searches**

Jets identification removes photons emulating jets

Annapaola de Cosa -ETHZ



#### $\gamma$ -based searches

Tight photon isolation criteria rejects misindentified jets



# $SVJ\gamma$ tagging algorithm



#### Annapaola de Cosa -ETHZ

#### Ad-hoc identification algorithm for SVJ $\gamma$

Neural network based on jet substructure features helps in identifying SVJ $\gamma$  while efficiently rejecting SM jets and SM photons





31

### Opening the way to discover SVJ $\gamma$

Run 2: 138 fb<sup>-1</sup> (13 TeV)



Annapaola de Cosa -ETHZ

Removing standard identification requirements, and using a dedicated selection algorithm open the way to discover SVJ $\gamma$  already with Run 2 LHC data

Sensivitiy of CMS hadronic SVJ search

Sensivitiy of CMS search without jet id

Sensivitiy of CMS search without std id. algos and with SVJ $\gamma$  tagger





### Complexity of Dark QCD



Annapaola de Cosa -ETHZ







### A step forward finding new physics

#### Dark QCD can be as complex as SM QCD

- Dark showers phenomenology depends on unknown parameters (N<sub>c</sub>, N<sub>F</sub>,  $\Lambda_{dark}$ ,  $m_{\pi_{dark}}$ , ...)
  - Large parameter space to cover

#### **Traditional strategies: Target specific model**

- Optimal sensitivity to targeted signal
- Low or null sensitivity to different signatures





### Anomaly detection

- Train a neural network (Autoencoder) to learn compressing and decompressing data minimising reconstruction error (e.g. MSE) between input and output
  - L(x) = ||g(f(x)) x||
- Identify new physics as anomalies



Annapaola de Cosa -ETHZ



#### **Training on SM data**

- Independent on background modelling
- Agnostic about the signal





### Autoencoder demo



Input: Real Data

Video from Jeremi Niedziela

Annapaola de Cosa -ETHZ

Output: Reconstructed Data



## Paving the way for discovery

First investigation of AE application to SVJs gave promising results

• Use high level features from jets internal structure



Loss (Output,Input)

|                       |     | A. de Cosa et al, "Autoencoders for Semivisible jet<br>detection"<br>JHFP Vol 2022, 74 (2022) |                         |       |       |                         |                                     |  |
|-----------------------|-----|-----------------------------------------------------------------------------------------------|-------------------------|-------|-------|-------------------------|-------------------------------------|--|
|                       | -   |                                                                                               | BDT                     |       |       | AE                      |                                     |  |
| m <sub>z'</sub> (TeV) | 4.0 | 0.885                                                                                         | 0.848                   | 0.774 | 0.736 | 0.702                   | 0.643                               |  |
|                       | 3.5 | 0.880                                                                                         | 0.841                   | 0.755 | 0.742 | 0.699                   | 0.640                               |  |
|                       | 3.0 | 0.876                                                                                         | 0.824                   | 0.727 | 0.739 | 0.697                   | 633<br>•                            |  |
|                       | 2.5 | 0.862                                                                                         | 0.796                   | 0.714 | 0.739 | 0.697                   | <b>.</b><br><b>.</b><br><b>6</b> 31 |  |
|                       | 2.0 | 0.829                                                                                         | 0.778                   | 0.689 | 0.718 | 0.686                   | 0.627                               |  |
|                       | 1.5 | 0.750                                                                                         | 0.698                   | 0.613 | 0.651 | 0.638                   | 0.608                               |  |
|                       | L   | 0.3                                                                                           | 0.5<br>r <sub>inv</sub> | 0.7   | 0.3   | 0.5<br>r <sub>inv</sub> | 0.7                                 |  |

AUC (Area Under the Curve): the higher the better





### Shortcomings of standard AEs

#### When trained on complex objects, such as $t\bar{t}$

- AE tends to generalise
  - out-of-distribution (OOD) data reconstructed as well as training ones.
- Critical loss in performance
- Reconstruction error is not a good metric









38

### The Normalised AE

#### We want to ensure matching between training data and low reconstruction error probability distribution

- Define probability distribution  $p_{\theta}$  so that regions with low reco error  $E_{\theta}$  have high probability
- Define reconstruction error as system Energy  $(E_{\theta})$
- Loss designed to learn  $p_{\theta} = p_{data}$ :
- $L_{\theta} = \mathbb{E}_{x \sim p_{\text{data}}} \left[ E_{\theta}(x) \right] \mathbb{E}_{x' \sim p_{\theta}} \left[ E_{\theta}(x') \right]$ positive energy  $E_+$  negative energy  $E_-$

**Use MCMC to sample "negative** samples" x' from  $p_{\theta}$  and compute their reco error E

$$p_{ heta}(x) = rac{1}{\Omega_{ heta}} \exp\left(-E_{ heta}(x)
ight)$$





<sup>2</sup>NAE first introduced in arXiv:2105.05735 and used in HEP in arXiv:2206.14225



### The Normalised AE



#### With Loss depending on $E_{-} - E_{+}$ , where $E_{+}$ is the reco. error of the training data, Signal SVJ reconstruction is efficiently suppressed







### Introducing the Weisserstein distance

How to determine best number of epochs in a fully agnostic way?

- probability distributions
  - Direct measure of learning  $p_{\theta} = p_{data}$

$$L_{\theta}^{WNAE} = \inf_{\gamma \in \Pi(p_{data}, p_{\theta})} \mathbb{E}_{(x, x') \sim \gamma} [||x - x'_{\theta}||]$$
  
$$\bigotimes$$
  
AUC is maximal when W distance is minimal

Annapaola de Cosa -ETHZ

**CMS Collaboration**, "Wasserstein Normalised Autoencoder" CMS-PAS-MLG-24-002

Wasserstein Normalised Autoencoder (WNAE) loss function: use Wasserstein distance between

 $x \sim p_{data}$  and  $x' \sim p_{\theta}$  (Energy Mover's Distance) to measure distance between background and AE







### Wasserstein Normalised AE

Anna





42

### WNAE performance

#### The WNAE achieves sensible improvement compared to the standard AE

Standard AE





#### WNAE







### Conclusions

- **Dark Matter might be less conventional that we think**
- Huge phenomenology still to investigate
  - **Novel models** (and signatures) to probe
  - Novel techniques to use
- Investigation of QCD-like DM still at the dawn
- Model agnostic techniques might be the keystone for finding new physics
  - Not limited to QCD-like DM
  - Multitude of applications!





### Additional material

Annapaola de Cosa -ETHZ







### Challenges - Instrumental background

**Artificial pTmiss due to instrumental backgrounds** Traditional data quality filters not sufficient for SVJ search

#### **Custom filtering algorithm developed to cope with**

- Additional "cold" ECAL cells causing artificial pTmiss
- Remaining signal from direct deposits on APD (spikes) rather than in the crystals in the gap regions ( $|\eta| \sim 1.3$ )



#### ECAL hot spots

Annapaola de Cosa -ETHZ









### Lepton-enriched SVJs

#### New models including decays to leptons:

 SVJ C: democratic decay to leptons allows by double messanger model (Z' plus A')

| PARAMETER              | DESCRIPTION              | BENC   |
|------------------------|--------------------------|--------|
| $M_{Z'}$               | $Z^\prime$ pole mass     | 1.5-   |
| $\epsilon_{\rm eff,v}$ | effective mixing         | 0      |
| $r_{inv}$              | invisible fraction       | 0.3, 0 |
| $\Lambda_v$            | dark confinement scale   | 5 (    |
| $m_{\pi_v}/\Lambda_v$  | pseudo-scalar mass ratio | 1      |

 Table 1 Signal model parameterization.



47