Storage cost optimisation on COSMA

Alastair Basden, Peter Draper, Mark Lovell, Fawada Qaiser, Richard Regan, Paul Walker

Alastair Basden DiRAC / Durham University Durham University Institute for Computational Cosmology **DiRAC** High Performance Computing Facility

Storage on HPC

- Traditionally: home, data and scratch
 - data and scratch are often the same
 - Balancing these helps to reduce cost
 - Select the right technology for the right place
- Thousands of nodes will write at once
 - Requires a parallel file system
 - Typical write patterns:
 - One file per node/rank
 - One file per job

Storage on COSMA

"home":

snapshotted,

backed up

"data": redundancy

"scratch": no redundancy

POSIX file systems

- /cosma/home ~100TB
- /cosma/apps ~100TB
- /cosma/local ~100TB
- /cosma[5,6,7,8] up to 20PB
- /snap[7,8] up to 1.2PB
- Object
 - StorJ
 - Ceph
- Tape ~30PB

Bulk "data" storage

- Always in demand
- Aim to make it cheap: £50k/PB (inc)
 - Needs to be performant
 - Parallel file system
- Ideally expandable

Standardised design

- Lustre with ZFS
- Pairs of servers and 84-drive JBODS
 - 12-16TB drives
 - 7 Zpools per server: Z2 (10+2)
 - Manual failover
 - Redundant controllers, HBAs and cables
- Overheads: x0.67 (RAID, TB to TiB, reserved)
- Expandable ~20GB/s/pair
- Self-installed: No software costs

Issues

 Rebuild times - up to 4 days - DRAID should reduce this Performance bottlenecks - Badly behaved codes User education - Or hardware faults

Scratch tier

- Lustre on NVMe
- High performance: ~400GB/s
- Non-redundant
 - 13 . LT . 14 15 . LT . 16 17 . LT . 18 19 - Component failure leads to data loss

NTOB 90NT010 11 0NT012

- <1/year
- Regular clear out

Standardised design

- Servers hosting 8 NVMe drives
 - One NIC per socket (InfiniBand)
 - Each drive becomes a storage target
 - No RAID

Hardware reuse

- Storage warranties 5-7 years
 - We operate beyond this:
 - Repurposed spares
 - System shrinkage
 - Reinstallation and repurposing
 - JBODS are good for this
 - User awareness
 - Replacement disks (cheap)

Home space VAST

Capacity -

• VAST

- Good compression (4:1)
 - Home space is well suited
- Not cheap
 - 2.5x considering compression
 - 10x otherwise
- Reliable, performant
- Replaced a Ext4/NFS solution
 - Far better tooling, visualisation, snapshots, etc
- Backed up to tape daily (60d), snapshotted hourly (7d)
- Limited to 10GB/user

Alastair Basden DiRAC / Durham University

V7 VAST

(?) 👩 admin

Lustre tends to struggle if used as homespace

Application storage

- /cosma/local: System installed modules
- /cosma/apps: User space for software, venvs, etc
 - Snapshotted but not backed up
 - 100GB
- Using the VAST system

Object storage

StorJ object storage:

- Distributed cloud storage on-premise
 - Hosted at 3 DiRAC sites
 - Provides S3 access
 - Reusing old hardware
- Ceph object storage:
 - Required for VM/Container storage etc
 - Not as cost-effective or performant as Lustre
 - Old hardware can be used
 - Current IRIS funding for Ceph storage attached to Azimuth cloud
 - 3 Storage nodes, 24 drives each

Таре

- Cost effective for volumes >30PB
 - Based on our historic purchases of disk and tape
 - And various assumptions on lifetime etc
 - Would be lower if our storage was more expensive
 - High initial costs:
 - Libraries, slot licencing, software licences
- 2 libraries separate locations
 - Data replicated
- Soon to be 3 libraries with erasure coding

Conclusions

- Storage does not need to be expensive
 - Assuming you can DIY
 - Expertise needed
- Important to differentiate use cases
 - User awareness / education helps
- 20PB for £1m