
The Near-line Data Store

Neil Massey – neil.massey@stfc.ac.uk

Thanks: Jack Leland, Bryan Lawrence, William Cross, Nicola Farmer

Bridging the gap between disk and tape

Overview

1. Current tape systems

available to JASMIN users,

and their problems.

2. The Near-line Data Store

architecture.

3. The Near-line Data Store as a

user.

4. Conclusions and next steps.

Tape, in 2025?
● Tape might seem old-fashioned, but it retains relevance

● Data volumes are increasing

● Increasing resolution of climate models, satellite instruments, etc.

● Increasing number of experiments, measurements, etc.

● Pressure to reduce energy usage from a cost and Net-Zero perspective

● Tape offers solution: cheaper per TB than disk to purchase, and run

● Uses less energy, especially when dormant

● Less e-waste on decommissioning

● But, to be used effectively, it requires a user-friendly interface

Current JASMIN tape systems
● Near-line Archive (NLA) – for CEDA archive data that is too large to store

on disk. Read only.

● Elastic Tape (ET) – for group-workspace managers to ingest data from

group-workspaces to tape.

● Joint Data Migration Application (JDMA) – A “user-friendly” wrapper on top

of ET that catalogues data, allows migrations and reports the status of

jobs.

NLDS will replace these

Problems with ET
● Only available to GWS managers and their deputies.

● Direct interaction with the tape, leading to contention and ingest errors.

● Only one version of a file can be stored in ET. Precludes any iterative

backup.

● Can be difficult to monitor progress of a job – only viewable via a website.

● Data is catalogued but not searchable. Only viewable via the website.

● Data retrieval is synchronous. Error requires whole retrieval to be

restarted.

● No authentication or authorisation!

● No way to check quota.

Problems with JDMA
● JDMA is a wrapper for ET

● Inherits all of ET’s problems and adds some of its own.

● Directory locking has been particularly problematic for some users.

● Cataloguing system is an improvement over ET – but there are now two

catalogues of user’s data (ET and JDMA)!

● Still no authentication

● Still only for GWS managers

● Historically poor performance

The Near-line Data Store

NLDS is a hierarchical file management system
● Users can ingest files from hot (disk) to warm (S3 object) storage

● Data is catalogued on ingest

● Data is automatically backed up to cold (tape) storage

● Data might be removed from warm storage via policies

● Retrieval from cold or warm storage via same command

● Only difference from user point of view is the time lag

● Ingest and retrieval are asynchronous

● No proprietary formats for storing the data

NLDS - Design
• RESTful API

○ Client library connects to API, client program uses client library

○ API is published in OpenAPI via FastAPI

• Portable – can be installed on any multi-user system

○ Use any S3 object storage on premise

○ Or remote – e.g. AWS remote storage

• Available to all users, not just GWS managers / deputies

• Implements CRUD (create, read, update, destroy)

• RabbitMQ message broker

• Open Source (of course)

NLDS - Technology
● NLDS uses OAuth2 to determine what a user can do

● Client library handles user’s token storage and requests to NLDS

● Server has custom “plug in” class for JASMIN authentication

● Portable: Can write a class for another authentication system (Apple, Google, etc)

● Rabbit MQ used as the message brokering system:

● Asynchronous, parallelism of tasks, resending of lost messages

● Topic-queue routing allows microservice specialisation and re-use

● Server-API and microservices deployed on containers via Kubernetes

● Portable, zero-downtime config changes and updates

● Dynamic redeployment under load

● Deployed via Helm charts and GitLab continuous integration

NLDS - Architecture

NLDS - Catalog
• Files can be added to a holding at any time

• Holdings are identified by a label, which are

constrained to be unique for a user

• A new holding is created if a holding with the specified

label is not found

• Default label is first 8 characters of first transaction

• Location records the storage system the file is stored

on (more than 1 possible)

• File paths have to be unique within a holding

• This is very different to previous system, it allows

multiple versions of the file to be stored, as long as

each version is in a different holding

Architecture Advantages
● Security: all user interactions are authorised by OAuth2, using their JASMIN

credentials

● Cloud available data: Object store allows data to be read across HTTP(S)

● Data is automatically catalogued on ingest

● Data can be tagged, searched by tags and regular expressions on paths

● The user does not interact with tape – they simply PUT or GET files

● Backup is handled automatically

● Highly fault tolerant – failed transfers will restart due to message broker

NLDS - User view
• Users interact with NLDS via a command line client or a Python client API

• Issue commands to copy data from the Disk (SOF, PFS or Pure) to the NLDS

• NLDS microservices copy the data on behalf of the user

• The data is cataloged

• Users can then delete the data from the disk and retrieve it from NLDS later

• Holdings are collections of files, that the user

has chosen to collect together and assign a

label to the collection

• Transactions record the user’s action when

PUTting a file into the NLDS. Each holding can

contain numerous transactions.

• Tags can be associated with a holding, in a
key:value format

• File records the details of a single file

• Location records the location(s) of a file, either

on OBJECT_STORAGE, TAPE, both or neither

NLDS - User catalog

NLDS Client - User interaction
A command line client - nlds - with a small number of commands

● put and putlist – put a single file or a list of files to the NLDS

● get and getlist – get a single file or a list of files from the NLDS

● meta – add label and tags to a holding

● stat – determine the status of a transaction

● list – list a user’s holdings, searching via label or tag with regular expressions

supported

● find – list a user’s files, searching via label or tag (for the holding containing the files)

and filepath via regular expression

● https://cedadev.github.io/nlds-client/command_ref.html

https://cedadev.github.io/nlds-client/command_ref.html
https://cedadev.github.io/nlds-client/command_ref.html
https://cedadev.github.io/nlds-client/command_ref.html
https://cedadev.github.io/nlds-client/command_ref.html

NLDS Client - Commands with metadata
PUT a single / list of files

● put --user --group (--label —-holding_id —-tag --job_label) filepath

● putlist --user --group (--label —-holding_id —-tag --job_label) filelist

● Optional

○ --label=: if a holding with label exists then add to an existing holding with the label, otherwise create a new holding

with the label

○ --holding_id=: adds to an existing holding with the (integer) id

○ --tag=key:value: adds a tag to the holding on PUT

○ --job_label=: set a label for the ingest job

GET a single / list of files

● get --user --group -–target (--label —-holding_id —-tag --job_label) filepath

● getlist --user --group -–target (--label —-holding_id —-tag) filelist

NLDS Client - Query with metadata

List the holdings for a user / group

● list

● Required arguments

○ --user=

● Optional arguments

○ --group=

○ --holding_id= (integer)

○ --tag=key:value (filter by tag)

○ --label= (filter by label)

○ --time=datetime|(start datetime, end datetime) (time the files were ingested)

○ --regex (use regular expressions when searching by label)

○ --transaction_id= (search by transaction id)

NLDS Client - Query with metadata

List / find the files for a user / group

● find

● Required arguments

○ --user=

● Optional arguments

○ --group=

○ --holding_id= (integer)

○ --tag=key:value (filter by tag for the holding containing the files)

○ --label= (filter by the holding label)

○ --time=datetime|(start datetime, end datetime) (time the files were ingested)

○ --path= (filter by original path, can be a substring, regex or wildcard)

○ --regex (use regular expressions when searching by label or path)

○ --transaction_id=(search by transaction id)

○ --simple (simple output of one file per line)

○ --url (output the object store URL)

NLDS Client - Query with metadata

Update the holding metadata

● meta

● Required arguments

○ --user=

○ One of (must guarantee uniqueness)

■ --holding_id=

■ --label=

○ Optional

■ --group

■ --new_tag=key:value (create or amend a tag)

■ --del_tag= (delete a tag)

■ --new_label= (change the label)

NLDS Client – Config file
• Quite a complex setup procedure

• Simplified by the nlds init command, which creates most of the config file

• Need to edit this to add user, group and object store credentials

• A comprehensive step-by-step guide has been written:

https://cedadev.github.io/nlds-client/step_by_step.html

• There is also a detailed tutorial:

https://cedadev.github.io/nlds-client/tutorial.html

• Installation of the client will be via PyPi (pip install nlds-client)

https://cedadev.github.io/nlds-client/step_by_step.html
https://cedadev.github.io/nlds-client/step_by_step.html
https://cedadev.github.io/nlds-client/step_by_step.html
https://cedadev.github.io/nlds-client/tutorial.html
https://cedadev.github.io/nlds-client/tutorial.html
https://cedadev.github.io/nlds-client/tutorial.html

Current status

• Functionally complete, for get/getlist, put/putlist and the query

commands

• In the final stages of the beta test

• Contact the JASMIN help desk if you would like to participate in this or

future beta tests

• Almost ready for wider release – just waiting for production tape config to

be finalised

• Will be fully available in the next two weeks

• … it’s been a long time coming, so thanks for your patience

Future developments

• Iterative version releases through 2025->2026

• Non-breaking changes only

• Adding functionality such as delete and cancel, quota and roles

• User feedback is welcome, as it could shape future features

• Widen use to JASMIN users without GWS

• Moving ET and JDMA batches / migrations to NLDS

• This will be done GWS by GWS

• Does not require moving data, just copying and transforming the records to

the NLDS database

• ET and JDMA will be retired when transfer of assets to NLDS is complete

Summary

● NLDS is a hierarchical file management

system which is:

○ Portable

○ CRUD

○ Single interface for hot/warm/cold storage

● Comprised of client, api-server and

microservices

● Will be the sole method of interacting with tape

for JASMIN GWS users in the future

Thank you!
Any Questions?

neil.massey@stfc.ac.uk

https://github.com/cedadev/nlds

https://github.com/cedadev/nlds-client

NLDS was supported through the

ESiWACE2 project. The project
ESiWACE2 has received funding from
the European Union's Horizon 2020

research and innovation programme
under grant agreement No 823988.

https://github.com/cedadev/nlds
https://github.com/cedadev/nlds-client
https://github.com/cedadev/nlds-client
https://github.com/cedadev/nlds-client

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

