

Federated

Kubernetes with

Geo-Distributed

IRIS IAM
Donald Chung (STFC)

IRIS IAM Service Manager

2nd July 2025

1 Overview of IRIS IAM

2 Geo-Distributed/Multi-cluster HA-

IAM technical overview

3 Performance testing findings for

Multi-cluster IAM

4 Multi-cluster Setup beyond IAM

Agenda

Overview of IAM

What is IRIS IAM?

▪ IAM (Identity and Access Manager) provides an
Authentication and Authorization Infrastructure (AAI)
solution to IRIS.

▪ The IAM acts as a proxy service, allowing IRIS
collaborators access to other IRIS services.
▪ SCD Cloud

▪ IRIS indico

▪ SAFE for Dirac

▪ FTS & Rucio

▪ Many more…

IRIS IAM – Why HA

▪ Provide IAM for entire UK

▪ Good availability

▪ Reduce risk of
▪ Loss of service

▪ Provide better grantee for
downstream services

▪ Geographically distributed
IAM service

Geo-Distributed HA-

IAM technical

overview

Architecture
▪ DNS load balancer

▪ Low infrastructure requirement (No BGP needed)

▪ Kubernetes

▪ Running

▪ IAM

▪ Database

▪ Session Storage

▪ Performance advantage

▪ VPN services

▪ Allow synchronization of data

▪ Needed

▪ Data synchronization

▪ Orchestration

Health

Check

1. User ask DNS for IP for

healthy endpoint

2. User connects to healthy

IAM endpoint via IP

returned

Sync data Via VPN

Liqo
▪ liqotech/liqo: Enable dynamic and seamless Kubernetes multi-cluster topologies

▪ Self-negotiated resource and service consumption
relationships between cluster
▪ VPN configurations
▪ Certification authorities

▪ Workload offloading to remote clusters
▪ No modification to K8s
▪ Status transparent

▪ Network Fabric: Native Pod-to-Pod and Pod-to-Service
▪ VPN tunnel for secure communication
▪ Synchronisation of State

▪ Storage Fabric:
▪ Auto configuration of storage class
▪ Storing that data closer to workload

https://github.com/liqotech/liqo

Liqo

▪ Setup

▪ Helm

▪ Build-in CLI application

▪ Peering between cluster

▪ Made aware of each other’s configuration

▪ E.g. pods and service CIDR

▪ Propagation of pod affinity/anti-affinity

▪ Reflecting resource

▪ Automatic offloading namespace

▪ CA

▪ Setting up control plane

▪ Communication with kubeapi can be
done within VPN or outside of VPN

Liqo

▪ Install with Helm or liqoctl on both cluster
▪ Set parameters such as: Pod/Service CIDR, amount of

resource to share, resources not to share, gateway
network

▪ Peering the cluster
▪ Negotiate Network

▪ Create relevant resources such as resources slice,
network pods

▪ Foreign cluster represented as worker virtual
nodes ready to schedule workloads from
master node

Foreign

WorkerMaster

Testing Scopes

▪Mainly testing service
reachability and performance
in the IAM Context

▪With combination of

▪Container Engine

▪Network Environment

▪Backend DB

▪Kubernetes Engine
performance is out of scope
of this investigation
▪ Benchmarking Liqo:

Kubernetes Multi-Cluster
Performance | by Marco Iorio |
The Liqo Blog | Medium

▪ Minimal at lost at 10k pods and
100ms latency between cluster

https://medium.com/the-liqo-blog/benchmarking-liqo-kubernetes-multi-cluster-performance-d77942d7f67c
https://medium.com/the-liqo-blog/benchmarking-liqo-kubernetes-multi-cluster-performance-d77942d7f67c
https://medium.com/the-liqo-blog/benchmarking-liqo-kubernetes-multi-cluster-performance-d77942d7f67c
https://medium.com/the-liqo-blog/benchmarking-liqo-kubernetes-multi-cluster-performance-d77942d7f67c

Testing Architecture
▪ HA Proxy load balancer

▪ 4x Core 16GB RAM

▪ Round Robin

▪ Kubernetes
▪ RKE2

▪ Testing Local Cluster
▪ 3x 8 Core + 30GB RAM (HA masters)

▪ Testing Remote Cluster
▪ 2x 8 Core + 30GB RAM (1x Master, 1x Worker)

▪ 30ms latency introduced with Linux traffic command, queuing
discipline applied on all remote cluster nodes IP

▪ IAM Setup
▪ One container per node

▪ Nginx

▪ INDIGO IAM

▪ Redis Sentinel

▪ Persistence Database
▪ SCD Galera

▪ MariaDB Replication

▪ Galera

Health

Check

HA proxy

Sync data Via VPN

Testing
▪ Locust - A modern load testing framework

▪ Python based

▪ Tests

▪ Access Token
▪ Issue Access Token

▪ Refresh Token
▪ Issue Access Token → Issue Refresh Token

▪ Workflow
▪ Issue Access Token → Issue Refresh Token → Token Exchange

▪ Hardware Setup
▪ 10 min x 3 Trial / Setup

▪ 8 Worker
▪ 500 simulated User

▪ 10 users/s ramp up

https://locust.io/

Findings

Current IAM

▪ Usage Level
▪ IRIS IAM

▪ 10-20 tokens / hr

▪ 20-30 logins / hr

▪ ~850 users in total

▪ ~330 clients in total

▪ SKA IAM

▪ 1000 – 2000 tokens/ hr

▪ 1000 – 2000 logins/ hr

▪ ~200 users in total

▪ ~ 620 clients in total

Request per Second (Throughput)

Response Time (50 percentile)

Response Time (80 percentile)

Response Time (95 percentile)

Findings
▪More container = Better performance

▪ Single node Docker < Single cluster (3x Frontend) < Multi cluster (5x
Frontend)

Findings
Minimal overhead with the network fabric

VPN wireguard, additional overhead
for remote monitoring

Findings
▪Galera yields better Throughput and response

time
▪ Especially for workloads involves higher proportion of

DB read

Findings

▪ Performance drop significantly
when

▪ Higher latency between DB and
INDIGO IAM

▪ Replica maria DB ensure
worse case scenario most
of the time at latency

▪ Minimum difference when
no latency between cluster,
performance degraded
significantly when latency is
introduced

Findings

▪ Failure rate Galera backend

▪ Proportional to

▪ number of member galera

▪ Number of frontend

▪ Potential causes

▪ Lack of Global lock for cluster (Error 500)

▪ Forcing rollback when conflicting write
happens

▪ INDIGO IAM no critical read support (Error 400,
Error 401)

▪ IAM read from a node that is not synced up
with the latest write

▪ Inconsistency with DB cluster

▪ Depends on workload

▪ Issuing access token only involve static read + insert

▪ Workflow involves additional referencing of data
written immediately after

Findings

▪Delay in web response when 30ms latency introduced
▪ Sentinel is a master replica structure

▪ Highly likely that any query is subjected to cross data centre

Conclusion

▪Using K8s
▪ Improve performance

▪ Ease of management
▪ Recovery

▪ Upgrading

▪Multi-cluster geo distributed setup
▪ Done securely

▪ No performance degradation compared to existing baseline

▪ Improve availability

▪Request hosting of foreign cluster for IAM.

Multi-cluster Setup

beyond IAM

Managing edge cluster

▪K8s cluster on edge, placed near field equipment (detector)

▪Normal Kubernetes extension
▪ Network resources (high latency, low bandwidth)

▪ Not plentiful

▪ Security
▪ Not strictly on site

▪ Field equipment may be listened or tampered if communication not encrypted

▪ Non uniform cluster setup
▪ Different routing and CIDR for pods and services

▪ Different storage implementation

Managing edge cluster

▪Mult cluster setup mitigates these issue
▪ Communication are subject to environmental Hazzard

▪ Allows ad-hoc joining of edge cluster

▪ Up to 200ms latency between clusters

▪ Re-establish communication amongst each other

▪ Member cluster are made aware of each others configuration
▪ Auto routing or NAT for pods and services between cluster CIDR (*)

▪ Some applications don’t work with NAT

▪ Mirrored storage class that follows the pods on a cluster

▪ Casted to local cluster preferred storage class

▪ No need to be aware of all storage engine downstream

Focus on resource-efficiency

▪ Leverage resources across research partners and public cloud
providers

▪ Focus on higher value-added activity
▪ GPU compute which has a high mark-up on GPU but lower mark up for

CPU

▪ Bursting of CPU workload into public cloud maybe cost efficient

▪Not tied to specific vendors
▪ Liqo is installed via helm and compatible with K8s compliant cluster

▪ In the event of vendor switch, service can be migrated with lower
disruption

@SciComp_STFCscd.stfc.ac.uk

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: What is IRIS IAM?
	Slide 6: IRIS IAM – Why HA
	Slide 7
	Slide 8: Architecture
	Slide 9: Liqo
	Slide 10: Liqo
	Slide 11: Liqo
	Slide 12: Testing Scopes
	Slide 13: Testing Architecture
	Slide 14: Testing
	Slide 15
	Slide 16: Current IAM
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Findings
	Slide 22: Findings
	Slide 23: Findings
	Slide 24: Findings
	Slide 25: Findings
	Slide 26: Findings
	Slide 27: Conclusion
	Slide 28
	Slide 29: Managing edge cluster
	Slide 30: Managing edge cluster
	Slide 31: Focus on resource-efficiency
	Slide 38
	Slide 39

