

Measurement of the Z boson mass with the LHCb detector

Emir Muhammad, on behalf of the LHCb Collaboration 02 April 2025 / QMUL Seminar

European Research Council

Established by the European Commission Photo by Gilbert Sopakuwa, CC BY-NC-ND 2.0

A MODEL OF LEPTONS*

Steven Weinberg[†] Laboratory for Nuclear Science and Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received 17 October 1967)

Leptons interact only with photons, and with the intermediate bosons that presumably mediate weak interactions. What could be more natural than to unite¹ these spin-one bosons into a multiplet of gauge fields? Standing in the way of this synthesis are the obvious differences in the masses of the photon and intermediate meson, and in their couplings. We might hope to understand these differences by imagining that the symmetries relating the weak and electromagnetic interactions are exact symmetries of the Lagrangian but are broken by the vacuum. However, this raises the specter of unwanted massless Goldstone bosons.² This note will describe a model in which the symmetry between the electromagnetic and weak interactions is spontaneously broken. but in which the Goldstone bosons are avoided by introducing the shoten and the intermediate

and on a right-handed singlet

$$R \equiv \left[\frac{1}{2}(1-\gamma_5)\right]e. \tag{2}$$

The largest group that leaves invariant the kinematic terms $-\overline{L}\gamma^{\mu}\partial_{\mu}L-\overline{R}\gamma^{\mu}\partial_{\mu}R$ of the Lagrangian consists of the electronic isospin \overline{T} acting on L, plus the numbers N_L , N_R of left- and right-handed electron-type leptons. As far as we know, two of these symmetries are entirely unbroken: the charge $Q = T_3 - N_R - \frac{1}{2}N_L$, and the electron number $N = N_R + N_L$. But the gauge field corresponding to an unbroken symmetry will have zero mass,⁴ and there is no massless particle coupled to N,⁵ so we must form our gauge group out of the electronic isospin \overline{T} and the electronic hyperchange $Y \equiv N_R$ $+ \frac{1}{2}N_L$.

At tree level...

$$m_W = \frac{gv}{2}, m_z = \frac{v\sqrt{g^2 + g'^2}}{2}$$
$$\cos \theta_W = \frac{g}{\sqrt{g^2 + g'^2}} = \frac{m_W}{m_z}$$
In 1967:
$$m_W > 40 \text{ GeV}, m_z > 80 \text{ GeV}$$

By ~1980: $m_z \sim 90 \text{ GeV}$

The Z discovery

UA1 m_Z = 91.2 ± 3.2 GeV Z.Phys.C 44 (1989) 15-61 UA2 m_z = 91.74 ± 0.97 GeV Phys.Lett.B 276 (1992) 354-364

PDG 2024

To higher precision

 Higher precision requires loop corrections

Now depends on top mass etc..

 M_Z Γ_Z $\sigma_{
m had}^0$ R_{ℓ} $A_{
m FB}^{0,\ell}$ $P_{-}^{\rm pol}$ \mathcal{A}_{ℓ} (SLD) \mathcal{A}_{c} \mathcal{A}_b $A_{\mathrm{FB}}^{0,c}$ $A_{
m FB}^{0,b}$ R_c^0 R_b^0 $\sin^2\theta_{\rm eff}^{\rm lept}(Q_{\rm FB}^{\rm had})$ $\sin^2 \theta_{\rm eff}^{\rm lept}$ (HC) \mathcal{A}_s R_{uc} -3 -2 2 -1 0 3 Pull

Phys. Rev. D 106 (2022) 033003

-3

 $lpha_s \left(M_Z^2
ight)$

-2

-1

0

2

HEPfit

Indirect $m_z = 91204.7 \pm 8.8$ MeV

The LEP legacy

- Large Electron Positron collider
- 1989 2000 @ CERN
- e⁺e⁻ collider, tuned to Z resonance
- ~ 17 *million* Z bosons
- Access via energy scan

LEP $m_z = 91187.6 \pm 2.1$ MeV

The LHC

- *pp* collider
- 2008 present @ CERN

Prospects of Z **measurements at LHC** $\checkmark \checkmark$

Designed to be a discovery machine. Is precision EW possible?

LEP

- Measure m_Z with beam-energy scan.
- <u>Beam-energy calibration.</u>

- LHC
- Measure m_Z with from finalstate kinematics
- Detector calibration.

Prospects of Z measurements at LHC \checkmark

"Since J/ ψ vs Z closure was used to tune calibration and enters the uncertainty model, not (yet) a fully independent measurement for inclusion in world average"

LHCb @ CERN

Tracking ranges ATLAS / CMS: $|\eta| < 2.5$ LHCb: $2 < \eta < 5$

- Originally for b/c physics
- General Purpose!

LHC 13 TeV Kinematics

LHCb EW program

 Complementary regions with other experiment

- Cross sections
 - $W \rightarrow \mu \nu @ 8 \text{ TeV}$
 - $Z \rightarrow \mu \mu$ @ 13 TeV
- Precision EW
 - W mass
 - Leptonic weak mixing angle
 - .. *Z* mass?

Collection of results in the backup

Z decay at LHCb

Most sensitive to $Z \rightarrow \mu\mu$

Event 285193784 Run 157633 Sat, 11 Jul 2015 14:03:29

Combined mass of \sim 91 GeV

Two high p_T muons

Dimuon mass spectrum

Z mass measurement at LHCb

Sensitive via the dimuon mass distribution

- Fit compares full simulation with the data
- *m_z* hypothesis varied by reweighting full simulation with generator level events

<u>JHEP 01 (2022) 036</u> <u>JHEP 12 (2024) 026</u>

- Build off previous m_W and weak mixing measurement tools
- Difference between data and simulation needs to be well under control

Dataset and selections

- Signal selection of:
 - $Z \rightarrow \mu \mu$
 - Muon η : 2.2 < η < 4.4
 - Muon p_T > 20 GeV
 - Identified muon candidate matched to single muon trigger path.

- Quarkonia selection of:
 - $\Upsilon(1S) \rightarrow \mu\mu$ (calibration)
 - $J/\psi \rightarrow \mu\mu$ (cross check)
 - Muon η : 2.2 < η < 4.4
 - Muon p_T > 5 GeV

Use 2016 dataset @ $\sqrt{s} = 13$ TeV, 1.7 fb⁻¹

Sample	Data events
$Z \rightarrow \mu \mu$	170,000
$\Upsilon(1S) \to \mu \mu$	190,000
$J/\psi ightarrow \mu\mu$	48,000

Naïve statistical uncertainty

$$\frac{3 \text{ GeV}}{\sqrt{170,000}} \approx 8 \text{ MeV}$$

The Simulation

The completed events and detector interactions are initially simulated with Pythia and GEANT4, respectively

A variety of models are used to fully reweight the events to next to leading order accuracy (we'll get to that later)

Pythia

<u>Comput. Phys. Commun. 178 (2008) 852</u> JHEP 05 (2006) 026, 517 GEANT4

Nucl. Instrum. Meth. A506 (2003) 250

IEEE Trans. Nucl. Sci. 53 (2006) 270

The momentum response
$$\mathcal{R} \sim \mathcal{N}(0,1)$$

 $p^{\pm} \rightarrow (1 + \alpha + \frac{\beta}{p^{\pm}} \mp \delta p^{\pm})(1 + a\mathcal{R}_1\sigma_1)(1 + b\mathcal{R}_2\sigma_2p^{\pm})p^{\pm}$

Differences between data and simulation are of the form above

The momentum response
$$\mathcal{R} \sim \mathcal{N}(0,1)$$

 $p^{\pm} \rightarrow (1 + \alpha + \frac{\beta}{p^{\pm}} \mp \delta p^{\pm})(1 + a\mathcal{R}_{1}\sigma_{1})(1 + b\mathcal{R}_{2}\sigma_{2}p^{\pm})p^{\pm}$

Bias terms

Smearing terms

Large effect on mass biasSmall effect on mass biasSmall effect on mass resolutionLarge effect on mass resolution

The momentum response
$$\mathcal{R} \sim \mathcal{N}(0,1)$$

 $p^{\pm} \rightarrow (1 + \alpha + \frac{\beta}{p^{\pm}} \mp \delta p^{\pm})(1 + a\mathcal{R}_1\sigma_1)(1 + b\mathcal{R}_2\sigma_2p^{\pm})p^{\pm}$

1. Curvature bias via pseudomass and Z

The momentum response
$$\mathcal{R} \sim \mathcal{N}(0,1)$$

 $p^{\pm} \rightarrow (1 + \alpha + \frac{\beta}{p^{\pm}} \mp \delta p^{\pm})(1 + a\mathcal{R}_1\sigma_1)(1 + b\mathcal{R}_2\sigma_2p^{\pm})p^{\pm}$

- 1. Curvature bias via pseudomass and Z
- **2.** Time dependent correction with $\Upsilon(1S)$

The momentum response
$$\mathcal{R} \sim \mathcal{N}(0,1)$$

 $p^{\pm} \rightarrow (1 + \alpha + \frac{\beta}{p^{\pm}} \mp \delta p^{\pm})(1 + a\mathcal{R}_1\sigma_1)(1 + b\mathcal{R}_2\sigma_2p^{\pm})p^{\pm}$

- 1. Curvature bias via pseudomass and Z
- 2. Time dependent correction with $\Upsilon(1S)$
- **3.** Direction dependent correction with $\Upsilon(1S)$

The momentum response
$$\mathcal{R} \sim \mathcal{N}(0,1)$$

 $p^{\pm} \rightarrow (1 + \alpha + \frac{\beta}{p^{\pm}} \mp \delta p^{\pm})(1 + a\mathcal{R}_1\sigma_1)(1 + b\mathcal{R}_2\sigma_2p^{\pm})p^{\pm})$

- 1. Curvature bias via pseudomass and Z
- 2. Time dependent correction with $\Upsilon(1S)$
- 3. Direction dependent correction with $\Upsilon(1S)$
- 4. Generalised momentum smearing for α , σ_1 , σ_2

Misalignments lead to curvature bias

$$m^2 = 2p^+p^-(1-\cos\theta)$$

 δ largely cancels out in the above

Needs an estimator that doesn't..

Pseudomass M^{\pm} with $Z \rightarrow \mu \mu$

$$M^{\pm} = \sqrt{2p^{\pm}p_T^{\pm}\frac{p^{\mp}}{p_T^{\mp}}(1-\cos\theta)}$$

PRD 91 (2015) 072002

$$p^{\pm} \rightarrow (1 + \alpha + \frac{\beta}{p^{\pm}} \mp \delta p^{\pm})(1 + a\mathcal{R}_1\sigma_1)(1 + b\mathcal{R}_2\sigma_2p^{\pm})p^{\pm}$$

-> Use this to correct *data*

Corrects asymmetry from the difference between data and simulation to account for small biases

Unbiased with m_Z

Changing m_Z in simulation by ± 100 MeV has 300 keV effect in final measurement

Correct the pseudomass asymmetry

$$p^{\pm} \rightarrow (1 + \alpha + \frac{\beta}{p^{\pm}} \mp \delta p^{\pm})(1 + a\mathcal{R}_1\sigma_1)(1 + b\mathcal{R}_2\sigma_2p^{\pm})p^{\pm}$$

JINST 19 (2024) P03010 LHCb, 2016 magnet-up 0.11 0.18 0.24 0.30 0.27 0.37 0.31 3.0 -0.28 0.41 0.33 0.32 0.14 -0.66 0.34 0.27 С, $\pm 0.36 \pm 0.26 \pm 0.20 \pm 0.18$ $\pm 0.13 \pm 0.12 \pm 0.09 \pm 0.07$ $\pm 0.07 \pm 0.06 \pm 0.05 \pm 0.05$ $\pm 0.05 \pm 0.05 \pm 0.15$ 0.35 0.44 0.40 -0.11 0.45 0.57 0.21 0.06 0.28 0.26 0.17 0.45 0.34 0.31 2.5 $\pm 0.24 \pm 0.18 \pm 0.15 \pm 0.13 \pm 0.10 \pm 0.10 \pm 0.08 \pm 0.07 \pm 0.07 \pm 0.05 \pm 0.06 \pm 0.05 \pm 0.08$ $f \pm 0.31$ 0.34 0.50 0.34 0.40 0.58 0.54 0.59 0.33 0.59 0.38 0.60 0.53 0.56 0.39 0.07 -0.45 2.0 $\pm 0.07 \pm 0.06 \pm 0.06 \pm 0.06 \pm 0.05 \pm 0.05$ ± 0.74 $\pm 0.34 \pm 0.24 \pm 0.19 \pm 0.15$ ± 0.13 $\pm 0.11 \pm 0.09$ ± 0.08 ± 0.08 0.47 0.32 0.29 0.55 0.15 0.09 0.18 -0.27 0.80 0.79 0.45 0.63 0.46 0.28 0 60 $\pm 0.06 \pm 0.07 \pm 0.06 \pm 0.06 \pm 0.06 \pm 0.06$ $\pm 0.79 \pm 0.27 \pm 0.20 \pm 0.17 \pm 0.13 \pm 0.12 \pm 0.09$ ± 0.08 ± 0.06 ± 0.11 1.57.58 1.27 0.82 0.58 0.76 0.49 0.41 0.32 0.30 0.31 0.13 0.11 -0.07 -0.07 0.03 0.14 $\pm 0.62 \pm 0.24 \pm 0.23 \pm 0.17$ $\pm 0.13 \pm 0.11 \pm 0.10$ ± 0.08 $\pm 0.07 \pm 0.06 \pm 0.06 \pm 0.07 \pm 0.06$ ± 0.07 $\pm 0.06 \pm 0.09$ 0.08 0.12 0.13 0.28 0.13 0.17 0.15 0.21 0.25 0.20 0.01 1.0 0.31 0.18 -0.14 0.03 $\pm 0.06 \pm 0.06 \pm 0.06 \pm 0.05$ ± 0.36 $\pm 0.28 \pm 0.19 \pm 0.15$ ± 0.14 $\pm 0.11 \pm 0.09$ ± 0.07 ± 0.06 ± 0.05 ± 0.09 0.18 -0.37 -0.36 -0.17 -0.24 -0.28 -0.06 0.15 -0.09 0.21 0.12 0.06 0.18 0.29 05 $\pm 0.07 \pm 0.06 \pm 0.06 \pm 0.05 \pm 0.27 \pm 0.06$ $\pm 0.32 \pm 0.24 \pm 0.19 \pm 0.16 \pm 0.12 \pm 0.12 \pm 0.09$ ± 0.07 -0.56 -0.57 -0.74 -0.26 -0.26 0.04 0.08 0.28 0.34 0.19 -0.080.10 $\pm 0.05 \pm 0.06$ $\pm 0.34 \pm 0.24 \pm 0.19 \pm 0.17 \pm 0.13 \pm 0.12 \pm 0.09$ $\pm 0.07 \pm 0.06 \pm 0.06$ ± 0.21 ± 0.08 ± 0.05 0.0-0.75 -0.53 -0.74 -0.22 -0.36 0.29 0.22 0.36 0.42 0.45 -0.25 -0.27 -0.05 0.34 0.07 $\pm 0.06 \pm 0.06 \pm 0.06 \pm 0.05 \pm 0.05 \pm 0.05 \pm 0.14$ $\pm 0.33 \pm 0.26 \pm 0.20 \pm 0.16 \pm 0.13 \pm 0.11$ ± 0.09 ± 0.08 -0.5-1.21 -0.91 -0.61 -0.71 0.06 0.16 -0.03 0.20 -0.10 0.16 -0.25 0.14 ± 0.06 ± 0.05 $\pm 0.32 \pm 0.24 \pm 0.19$ ± 0.15 $\pm 0.07 \pm 0.06$ ± 0.08 -0.06 -0.21 -0.24 -0.21 -0.23 -1.25 -0.18 -0.41 -0.22 -0.07 -0.07 0.09 0.05 -0.29 0.26 0.52 -1.0 $\pm 0.07 \pm 0.06 \pm 0.06 \pm 0.05 \pm 0.05 \pm 0.05$ $\pm 0.33 \pm 0.24 \pm 0.21 \pm 0.15$ ± 0.07 $\pm 0.12 \pm 0.10 \pm 0.09$ -0.82 -0.44 -0.14 0.05 -0.02-0.17 -0.11-0.12 -0.25 -0.36 -0.25 -0.34 -0.28 -0.19 -1.5 $\pm 0.07 \pm 0.06 \pm 0.06 \pm 0.06 \pm 0.06 \pm 0.07$ $\pm 0.65 \pm 0.27 \pm 0.21 \pm 0.16 \pm 0.13 \pm 0.12$ ± 0.06 ± 0.12-± 0.10 ± 0.08 -0.16 0.14 -0.53 -0.17 0.11 0.04 -0.05 -0.16 -0.31 -0.18 0.18 0.17 -0.33 -0.18 -0.00 0.10 $\pm 0.07 \pm 0.07 \pm 0.05 \pm 0.06 \pm 0.06 \pm 0.06 \pm 0.06 \pm 0.08$ $\pm 0.57 \pm 0.29 \pm 0.21 \pm 0.17 \pm 0.13 \pm 0.11 \pm 0.09$ ± 0.08 -2.0-2-0.46 -0.18 -0.33 -0.27 0.20 -0.12 0.04 0.05 0.03 0.06 0.24 0.15 0.18 0.32 $\pm 0.32 \pm 0.24 \pm 0.19 \pm 0.16$ $\pm 0.12 \pm 0.12 \pm 0.09$ ± 0.08 $\pm 0.07 \pm 0.06 \pm 0.06$ ± 0.05 ± 0.05 $\pm 0.06 \pm 0.08$ -2.5-0.37 -0.11 -0.22 -0.16 -0.13 0.03 0.13 -0.04 -0.21 0.03 -0.07 0.10 0.04 -0.06 $\pm 0.34 \pm 0.25$ $\pm 0.20 \pm 0.15 \pm 0.12 \pm 0.10 \pm 0.10 \pm 0.07 \pm 0.07 \pm 0.06$ ± 0.06 ± 0.05 ± 0.05 ± 0.08 0.94 0.28 0.00 0.22 0.09 -0.03 0.17 0.01 -0.08 -0.08 -0.08 0.16 0.08 0.01 0.14 $-3.0 \pm 0.34 \pm 0.30 \pm 0.20 \pm 0.16 \pm 0.13 \pm 0.10_{1} \pm 0.10_{1} \pm 0.08 \pm 0.07 \pm 0.06 \pm 0.05 \pm 0.06 \pm 0.05_{1} \pm 0.11_{1}$ 2.02.53.0 3.5 4.5 4.0

Corrections $\sim 10^{-4}$

 $p^{\pm} \rightarrow (1 + \alpha + \frac{\beta}{p^{\pm}} \mp \delta p^{\pm})(1 + a\mathcal{R}_1\sigma_1)(1 + b\mathcal{R}_2\sigma_2p^{\pm})p^{\pm}$

 $[10^{-4}/Ge]$

Contributes 0.8 MeV to uncertainty

$$p^{\pm} \rightarrow (1 + \alpha + \frac{\beta}{p^{\pm}} \mp \delta p^{\pm})(1 + a\mathcal{R}_1\sigma_1)(1 + b\mathcal{R}_2\sigma_2p^{\pm})p^{\pm}$$

2. Time varying momentum scale

- Time dependent mass scale in LHCb
- Extract the $\Upsilon(1S)$ line shape parameters in bins of the 2016 data-taking period <u>2024 JINST 19 P02008</u>
- Correct mass scales by comparing with PDG values

Corrected in data

$$p^{\pm} \rightarrow (1 + \alpha + \frac{\beta}{p^{\pm}} \mp \delta p^{\pm})(1 + a\mathcal{R}_1\sigma_1)(1 + b\mathcal{R}_2\sigma_2p^{\pm})p^{\pm}$$

3. Direction dependent momentum scale

- Localised biases across the detector
- Corrections in 16 bins of η / ϕ
- Extract $\Upsilon(1S)$ lineshape parameters from each bin for data and simulation

Correct simulation to match data

$$p^{\pm} \rightarrow (1+\alpha + \frac{\beta}{p^{\pm}} \mp \delta p^{\pm})(1 + a\mathcal{R}_1\sigma_1)(1 + b\mathcal{R}_2\sigma_2p^{\pm})p^{\pm}$$

4. Momentum smearing

Parameter	Value
α	(-0.65 ± 0.16) x 10 ⁻⁴
σ_1	(1.98 ± 0.07) x 10 ⁻³
σ_2	(0.147 ± 0.009) TeV ⁻¹

- Smearing parameters are somewhat anticorrelated
- σ_2 allowed to float with some

multiplicative factor in the final Z mass fit

Z width not possible in this analysis

4. Momentum smearing

Source	Size [MeV]
Detector material description	2.6
Calibration samples	2.0
Smearing fit	1.8
Mass of the $\Upsilon(1S)$	1.5
Curvature Biases	0.7
QED corrections for $\Upsilon(1S)$	0.6
Momentum calibration uncertainty	4.1

$$p^{\pm} \rightarrow (1 + \alpha + \frac{\beta}{p^{\pm}} \mp \delta p^{\pm})(1 + a\mathcal{R}_1\sigma_1)(1 + b\mathcal{R}_2\sigma_2p^{\pm})p^{\pm}$$

Muon reconstruction efficiencies

Muon trigger, ID, and tracking efficiencies measured in data and simulation with the tag-and-probe method

Similar to the W mass and the weak mixing analyses

Simulation corrected with event-by-event weights

Contributes 0.1 MeV to the uncertainty

Signal modelling

Reminder: Pythia (LO + LL) was used to generate the simulation

Want to

- Vary m_Z
 - Treat Z/γ interference
 - Increase accuracy of predictions
 - Propagate uncertainties

Solution: reweight events

 $\sum_{a,b} \int dx_1 dx_2 d\Phi_{\rm FS} f_a(x_1,\mu_F) f_b(x_2,\mu_F) \,\hat{\sigma}_{ab\to X}(\hat{s},\mu_F,\mu_R)$

Phase-space integral

Parton density functions

Parton-level cross section

Dimuon mass templates

- Generated from a special version of POWHEG-BOX Eur. Phys. J. C 73 (2013) 6
- Includes QED Predictions at NLO
- EW theory input scheme: (G_F, m_W, m_Z)
- Samples generated with varying m_Z
- Z mass was blinded during analysis development

The POWHEG BOX

Project

The POWHEG BOX is a general computer framework for implementing NLO calculations in shower Monte Carlo programs according to the POWHEG method. It is also a library, where previously included processes are made available to the users. It can be interfaced with all modern shower Monte Carlo programs that support the Les Houches Interface for User Generated Processes.

 \rightarrow we get multiple Z mass hypothesis with correct NLO corrections

Dimuon mass templates

 The first photon emission is computed exactly by POWHEG.

 Including radiation from initial- and final-state, and their interference.

 Additional final-state photon emissions handled by PHOTOS.

Resummation of log-enhanced terms.

• Uncertainty on m_Z of 0.8 MeV from alternative prescription with PYTHA.

Parton density functions

Eur. Phys. J.C 77 (2017) 663

- Central fit result from NNPDF3.1 NLO
- Choice of
 - MSHT20NLO Phys. Rev. D 103 (2021) 014013
 - CT18NLO Eur. Phys. J. C 81 (2021) 341
- Uncertainty of 0.7 MeV is assigned
- Given by the envelope between the three PDF sets

Fitting *m*_Z

Chi squared Z mass m_Z q/p smearing factor correlation 44.2/37 91xxx ± 8.5 MeV 1.25 ± 0.06 0.015

Uncertainties

Source	Size [MeV]
Momentum calibration	4.1
Signal QED corrections	0.8
Parton distribution functions	0.7
Detection Efficiency	0.1
Statistical uncertainty	8.5
Total	9.5

Uncertainties

Source	Size [MeV]
Momentum calibration	4.1
Signal QED corrections	0.8
Parton distribution functions	0.7
Detection Efficiency	0.1
Statistical uncertainty	8.5
Total	9.5

- Measurement unbiased with m_Z
 - Momentum calibration with $\Upsilon(1S)$
 - Pseudomass does not depend on m_Z

Consistency of sub samples

Other checks

- Varying the analysis in various ways yields < 1 MeV changes
 - Varying number of bins used in the various fitters
 - Varying the ranges used in various fitters

- Closure checks all pass
 - Both momentum scale

corrections

Momentum smearing with all

samples

Final Z mass fit

Result

47

Result

48

Result

Future prospects

- LHCb measurements of (2022) m_W , (2024) weak-mixing angle, and (2025) m_Z
- Analyses of m_W and m_Z with full Run-2 dataset ongoing
 - ~(5)20 MeV for $m_{Z(W)}$
- Program also well underway with Run-3 data

- Encouraging prospects for m_Z at the **LHC**
 - Eagerly anticipate dedicated m_Z results from ATLAS and CMS
 - Detector calibration uncertainties mostly uncorrelated between experiments.
 - An LHC average could challenge LEP soon!

Summary

• m_z measurable at LHCb!

 $m_z = 91184.2 \pm 9.5 \text{ MeV}$

- Results consistent with SM and previous measurements
- First dedicated measurement at the LHC

Backup

LHCb EW Program

Analysis	Reference
$W \rightarrow \mu \nu @ 8 \text{ TeV}$	<u>JHEP 01 (2016) 155</u>
$Z ightarrow \mu \mu$ @ 13 TeV	<u>JHEP 07 (2022) 026</u>
W mass	<u>JHEP 01 (2022) 036</u>
Leptonic weak mixing angle	<u>JHEP 12 (2024) 026</u>
•••	•••

For the most up to date results of the LHCb EW program, see https://lbfence.cern.ch/alcm/public/analysis and filter by QCD, Electroweak and Exotica

Alternatively, click <u>here</u>!

Magnetic Field Map

Figure 4.2: Relative difference between the measurements of B using different Hall probes at the same position in the magnet. The resolution is completely dominated by the precision of the calibration of the Hall probes.