Machine Learning in Materials and Chemicals Design

Dr Tom Whitehead 19th November 2025

Introducing Intellegens

Applied machine learning

Unique ML algorithm

Easy-to-use apps

Expertise from 100s of successful projects

Our vision

"Machine learning will drive innovation and deliver value wherever data is used in R&D"

Life Sci

Value for our customers

Optimize products and processes

50-80% fewer experiments

Deep insights into R&D data

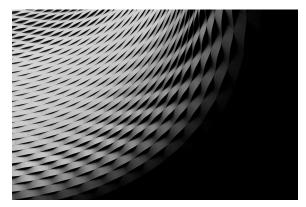
Manufacturing

Agenda

- How do we design new materials and chemicals?
- How does machine learning help?
- Practical considerations and workflows

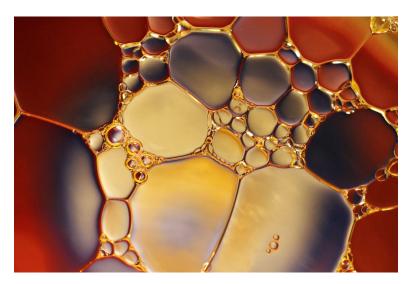
New materials and chemicals

- Where physics meets application
 - Energy transition, sustainability, advanced manufacturing
- Enormous design spaces
 - Billions of possible molecules, mixtures, or microstructures
- Data-limited regime
 - Each experiment is costly, so space is sparsely sampled
- Physical theories do not capture true complexity



New materials and chemicals

- Goal is not to understand materials better
- Goal is to design a material that solves business problem
- How do we find the right material for the application?



How do you solve a problem like experimental design?

Try every possible formulation

Guaranteed to find the best formulation

- May be infinitely many possibilities
- Budgets / timescales are finite

How do you solve a problem like experimental design?

Try every possible formulation

Guaranteed to find the best formulation

- May be infinitely many possibilities
- Budgets / timescales are finite

Ask an expert

Uses knowledge from past projects

- Expensive resource
- Limited time available

How do you solve a problem like experimental design?

Try every possible formulation

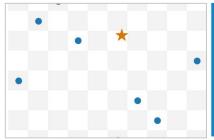
Guaranteed to find the best formulation

- May be infinitely many possibilities
- Budgets / timescales are finite

Ask an expert

Uses knowledge from past projects

- Expensive resource
- Limited time available



Structured design / DoE

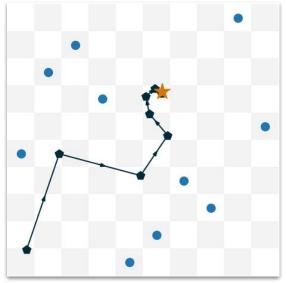
Efficiently covers design space

- May require a large number of experiments
- Requires statistical knowledge

Adaptive Experimental Design

 Instead of static experimental designs, in Adaptive Experimental Design machine learning is used to iteratively update experimental suggestions as more information becomes available

Also known as Bayesian Optimization



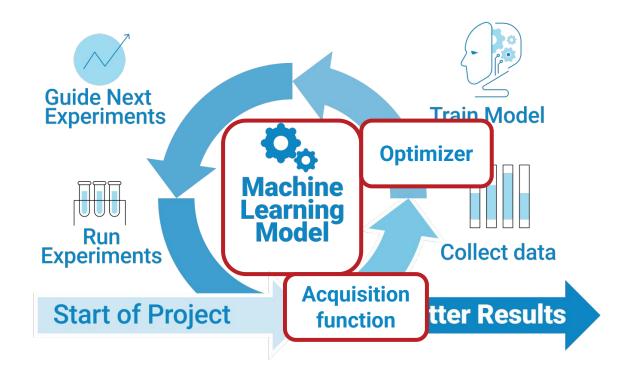
Why Adaptive Experimental Design?

- Iterative adjustments based on emerging data
- Reduced number of experiments
 - Reducing time
 - Reducing cost
- Learning-driven approach
- Less statistical background required to utilize than DoE

Adaptive Experimental Design

Start of Project

Adaptive Experimental Design



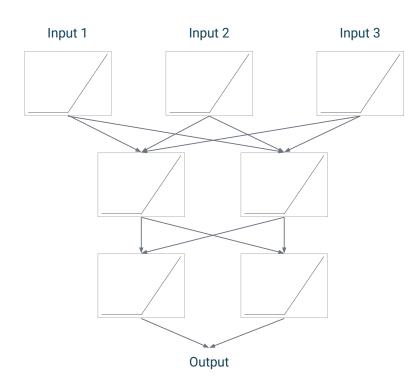
Machine Learning surrogate models

Machine Learning

- Statistics is complicated: get the computer to do it
- Multiple different ML algorithms, with different assumptions, strengths, and weaknesses
- Key questions for adaptive experimental design:
 - Will it work with the amount of data I have?
 - Does it provide uncertainty quantification?
 - How explainable is it?

G

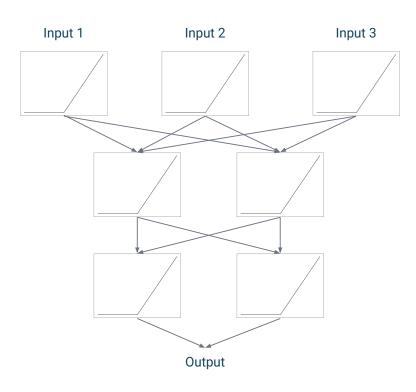
- What most people think of when you say 'Al'
- With enough 'neurons' you can fit any function
 - It can need a lot of neurons



- What most people think of when you say 'AI'
- With enough 'neurons' you can fit any function
 - It can need a lot of neurons
- Will it work with the amount of data I have?

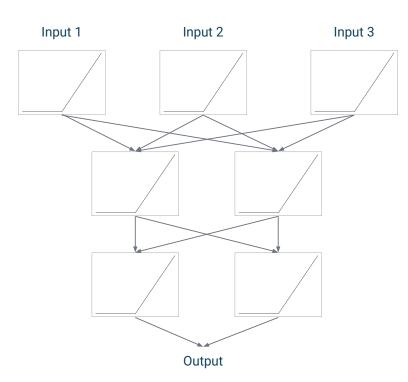
Big data:

Small data: X



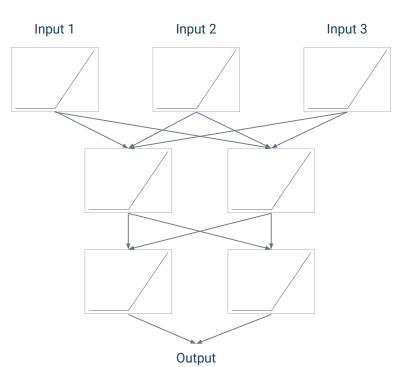
- What most people think of when you say Ήľ
- With enough 'neurons' you can fit any function
 - It can need a lot of neurons
- Will it work with the amount of data I have?
 - Big data

- Small data 🔀
- Does it provide uncertainty quantification?
 - Sometimes <



- What most people think of when you say 'AI'
- With enough 'neurons' you can fit any function
 - It can need a lot of neurons
- Will it work with the amount of data I have?
 - Big data

- Small data
- Does it provide uncertainty quantification?
 - Sometimes
- How explainable is it?
 - Awful



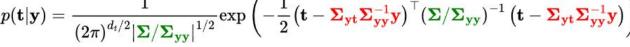
Gaussian Process Regression

Assume all your data is multi-normally distributed, with one dimension for each data point

$$g(\mathbf{y}; \mathbf{\Sigma}, oldsymbol{\mu}) = rac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \mathrm{exp}\left(-rac{1}{2} (\mathbf{y} - oldsymbol{\mu})^ op \mathbf{\Sigma}^{-1} \left(\mathbf{y} - oldsymbol{\mu}
ight)
ight)$$

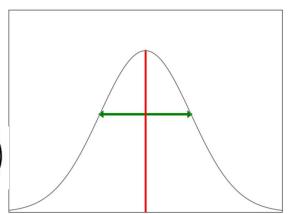
Find conditional distribution of test data given training data: neat formula because Gaussians

$$p(\mathbf{t}|\mathbf{y}) = rac{1}{(2\pi)^{d_t/2} |\mathbf{\Sigma}/\mathbf{\Sigma}_{\mathbf{y}\mathbf{y}}|^{1/2}} \mathrm{exp} \left(-rac{1}{2} ig(\mathbf{t} - rac{\mathbf{\Sigma}_{\mathbf{y}\mathbf{t}} \mathbf{\Sigma}_{\mathbf{y}\mathbf{y}}^{-1} \mathbf{y} ig)^{ op} (\mathbf{\Sigma}/\mathbf{\Sigma}_{\mathbf{y}\mathbf{y}})^{-1} \left(\mathbf{t} - rac{\mathbf{\Sigma}_{\mathbf{y}\mathbf{t}} \mathbf{\Sigma}_{\mathbf{y}\mathbf{y}}^{-1} \mathbf{y} ig)
ight)$$



Big data:

Small data:



Gaussian Process Regression

 Assume all your data is multi-normally distributed, with one dimension for each data point

$$g(\mathbf{y}; \mathbf{\Sigma}, oldsymbol{\mu}) = rac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \mathrm{exp}\left(-rac{1}{2} (\mathbf{y} - oldsymbol{\mu})^ op \mathbf{\Sigma}^{-1} \left(\mathbf{y} - oldsymbol{\mu}
ight)
ight)$$

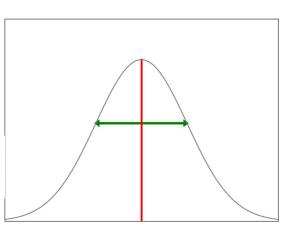
 Find conditional distribution of test data given training data: neat formula because Gaussians

$$p(\mathbf{t}|\mathbf{y}) = \frac{1}{(2\pi)^{d_t/2} |\mathbf{\Sigma}/\mathbf{\Sigma}_{\mathbf{y}\mathbf{y}}|^{1/2}} \mathrm{exp} \left(-\frac{1}{2} \big(\mathbf{t} - \mathbf{\Sigma}_{\mathbf{y}\mathbf{t}} \mathbf{\Sigma}_{\mathbf{y}\mathbf{y}}^{-1} \mathbf{y} \big)^{\top} (\mathbf{\Sigma}/\mathbf{\Sigma}_{\mathbf{y}\mathbf{y}})^{-1} \left(\mathbf{t} - \mathbf{\Sigma}_{\mathbf{y}\mathbf{t}} \mathbf{\Sigma}_{\mathbf{y}\mathbf{y}}^{-1} \mathbf{y} \right) \right)$$

Big data:

Small data:

Does it provide uncertainty quantification?



Gaussian Process Regression

Assume all your data is multi-normally distributed, with one dimension for each data point

$$g(\mathbf{y}; \mathbf{\Sigma}, oldsymbol{\mu}) = rac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \mathrm{exp}\left(-rac{1}{2} (\mathbf{y} - oldsymbol{\mu})^{ op} \mathbf{\Sigma}^{-1} \left(\mathbf{y} - oldsymbol{\mu}
ight)
ight)$$

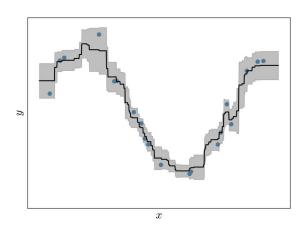
Find conditional distribution of test data given training data: neat formula because Gaussians

$$p(\mathbf{t}|\mathbf{y}) = rac{1}{(2\pi)^{d_t/2} |\mathbf{\Sigma}/\mathbf{\Sigma}_{\mathbf{y}\mathbf{y}}|^{1/2}} \mathrm{exp} \left(-rac{1}{2} ig(\mathbf{t} - rac{\mathbf{\Sigma}_{\mathbf{y}\mathbf{t}} \mathbf{\Sigma}_{\mathbf{y}\mathbf{y}}^{-1} \mathbf{y} ig)^{ op} (\mathbf{\Sigma}/\mathbf{\Sigma}_{\mathbf{y}\mathbf{y}})^{-1} \left(\mathbf{t} - rac{\mathbf{\Sigma}_{\mathbf{y}\mathbf{t}} \mathbf{\Sigma}_{\mathbf{y}\mathbf{y}}^{-1} \mathbf{y} ig)
ight)$$

- Big data:
- Small data:

- Does it provide uncertainty quantification?
- How explainable is it?

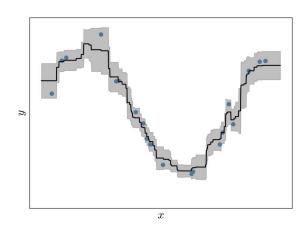
- Train decision trees on bootstrap samples of data
- Average over trees to reduce variance in predictions without increasing bias (much)



- Train decision trees on bootstrap samples of data
- Average over trees to reduce variance in predictions without increasing bias (much)
- Will it work with the amount of data I have?

Big data:

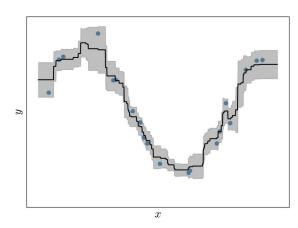
Small data: 🗸



- Train decision trees on bootstrap samples of data
- Average over trees to reduce variance in predictions without increasing bias (much)
- Will it work with the amount of data I have?
 - Big data:

Small data: 🗸

Does it provide uncertainty quantification?



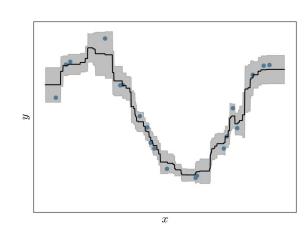
intellegens.com

- Train decision trees on bootstrap samples of data
- Average over trees to reduce variance in predictions without increasing bias (much)
- Will it work with the amount of data I have?
 - Big data:

Small data: <

Does it provide uncertainty quantification?

How explainable is it?



intellegens.com Confidential

Machine Learning surrogate models

	Neural Networks	Gaussian Process Regression	Random Forests
Works with big data?	⊘	×	⊘
Works with small data?	×	⊘	S
Uncertainty quantification?	⊘	**	⊘
Explainable?	×		

Acquisition Functions

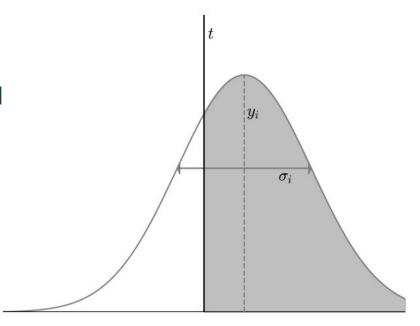
Acquisition Functions: what do we want to achieve?

- Remember we don't want to find the best material
- We want something 'good enough' to achieve business objectives

Probability of Improvement

- What is the probability that a suggestion achieves our target?
- Assume prediction is normally distributed

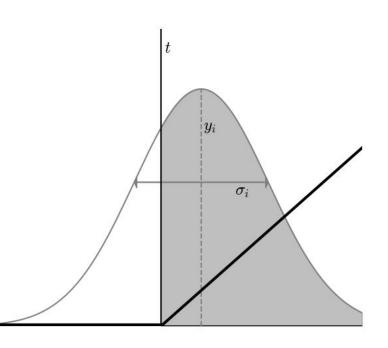
$$ext{PI}(t; y_i, \sigma_i) = \Phi\left(rac{y_i - t}{\sigma_i}
ight)$$



Expected Improvement

- Objective is to achieve specified target: but overachieving is even better!
- What is the expected improvement over the target value?

$$\mathrm{EI}(t;y_i,\sigma_i) = (y_i-t)\Phi\left(rac{y_i-t}{\sigma_i}
ight) + \sigma_i\phi\left(rac{y_i-t}{\sigma_i}
ight)$$

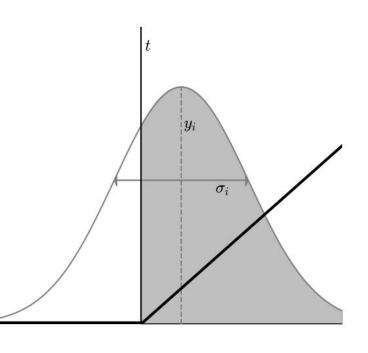


Expected Improvement

- Objective is to achieve specified target: but overachieving is even better!
- What is the expected improvement over the target value?

$$ext{EI}(t;y_i,\sigma_i) = (y_i - t)\Phi\left(rac{y_i - t}{\sigma_i}
ight) + \sigma_i\phi\left(rac{y_i - t}{\sigma_i}
ight)$$

"Exploitation"

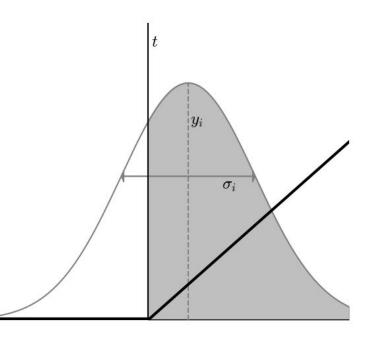


Expected Improvement

- Objective is to achieve specified target: but overachieving is even better!
- What is the expected improvement over the target value?

$$\mathrm{EI}(t;y_i,\sigma_i) = (y_i-t)\Phi\left(rac{y_i-t}{\sigma_i}
ight) + \sigma_i\phi\left(rac{y_i-t}{\sigma_i}
ight)$$

"Exploration"



Gotchas

Expected Improvement is widely used in Adaptive Experimental Design

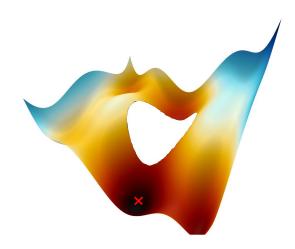
$$\mathrm{EI}(t;y_i,\sigma_i) = (y_i - t)\Phi\left(rac{y_i - t}{\sigma_i}
ight) + \sigma_i\phi\left(rac{y_i - t}{\sigma_i}
ight)$$

- Why this particular exploration/exploitation tradeoff?
- How confident are we in our uncertainty estimates?

Optimizers

How do we optimize the cost function?

- Gradient-based optimizers (gradient descent, SGD, Adam, etc) can be used if surrogate model gives gradient information
 - Neural Networks and Gaussian Processes OK Random Forests are not smooth
 - Some types of data (e.g. categories) not really differentiable
- Gradient-based methods can struggle with non-convex constraints



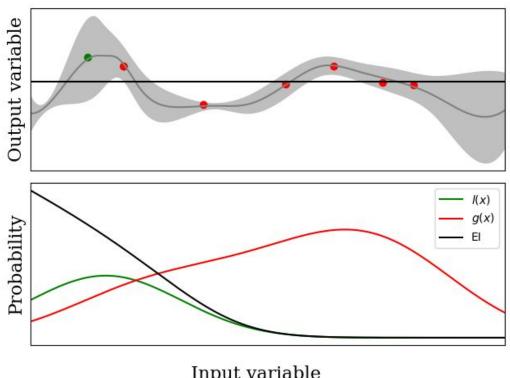
Bayesian Optimizers

- Putting the Bayesian into Bayesian Optimization
- Handle complicated, non-smooth, non-convex landscapes, at the cost of speed
- Tree-structured Parzen Estimators (TPE)
 - Select quantile $\gamma = P(y > t)$ (exploration/exploitation trade-off!)
 - \circ Parametrize $P(x|y) = egin{cases} l(x) & ext{if } y > t \ g(x) & ext{if } y \leq t \end{cases}$
 - l(x) and g(x) constructed by including each data point as a Gaussian peak
 - $\text{Calculate EI} \quad \text{EI}_t(x) = \int_t^\infty (y-t) P(y|x) \mathrm{d}y = \int_t^\infty (y-t) \frac{P(x|y) P(y)}{P(x)} \mathrm{d}y \\ \propto \left(\gamma + \frac{g(x)}{l(x)} (1-\gamma)\right)^{-1}$

So to maximise EI we want to find inputs where l(x) is large and g(x) is small

Tree-structured Parzen Estimators (TPE)

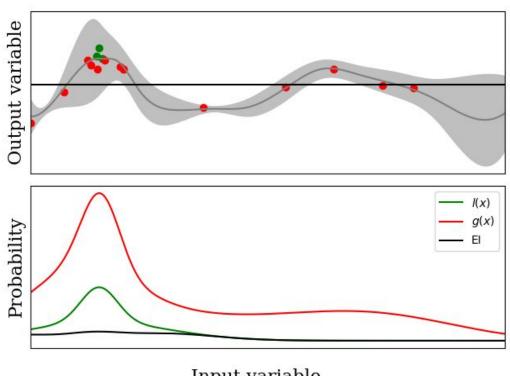
- γ = 0.2 (exploitation)
- Initial data



Input variable

Tree-structured Parzen Estimators (TPE)

- γ = 0.2 (exploitation)
- After 10 new suggestions
- Note most new suggestions tightly grouped



Input variable

Honorable mention: random search

- In high dimensional systems, searching randomly is very effective
- Many other optimization algorithms start with random searching to 'seed' the algorithm
- Particularly effective if multiple optima
- Very quick
- Not generally quite as accurate as other algorithms

Adaptive Experimental Design

How to choose a setup

- Surrogate models, acquisition functions, and optimizers should all be selected together
- Common choice is Gaussian Process surrogate model, El acquisition function, and gradient-based optimizer
- BUT this struggles with realistic constraints, categorical options, high dimensionality

Case Study: Heat Exchanger at NASA

- Objective: design more efficient heat exchanger
- Design space:
 - Material composition, height, width, splay, etc (continuous)
 - Base shape, configuration (categorical)
- Objectives:
 - Minimize base area, thermal resistance

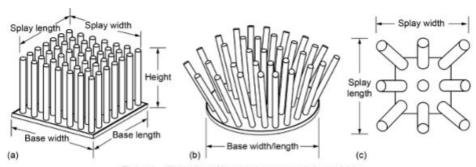
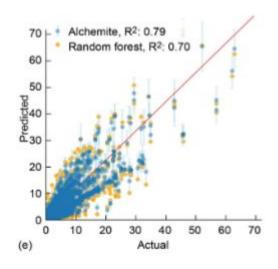


Figure 1.—Illustration of heat exchangers and size variables.

Case Study: Heat Exchanger at NASA

- Data scraped from heat exchanger vendor
- Intellegens' Alchemite™ ML surrogate model outperformed Random Forest
- Focus on exploitation, Probability of Improvement acquisition function
- TPE optimizer as non-smooth design space



Case Study: Heat Exchanger at NASA

- Suggested design: to maximize airflow, include an integrated fan!
 - Permitted in the design space
 - But NASA actually wanted no energy input: needed to adjust design space
 - https://ntrs.nasa.gov/citations/20220008637
- Across dozens of projects we typically see 50-80% reduction in number of experiments needed

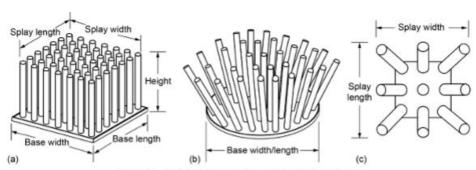


Figure 1.—Illustration of heat exchangers and size variables.

Summary

Summary

- Adaptive Experimental Design uses Machine Learning to accelerate materials and chemicals design
- Multiple tools in the toolkit: consider mathematical properties of tools and problems to select between them
- Accelerate R&D using machine learning

Questions?

G

tom@intellegens.com

intellegens.com

- in /in/tom-whitehead-33a319131/
- in /company/intellegensai

subscribe for monthly newsletter and webinar alerts

intellegens.com/subscribe