The SHiP experiment: the flagship to probe hidden sectors

Particle Physics Research Centre Seminar, Queen Mary University London

Matei Climescu, matclim@cern.ch

Experimental Particle Physics and Gravity, University of Ghent

03/12/2025

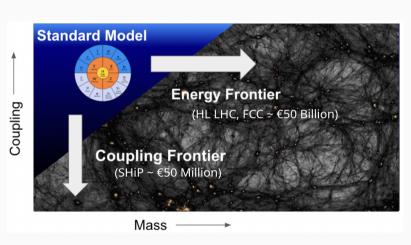
Universiteit Gent

Outline

- The Standard Model, crowning achievement missing crown jewels
- ► The hunt for the lost never found treasures of physics
- ► Along the beamline: subsystems to make a SHiP
- ► Conclusion

The Standard Model

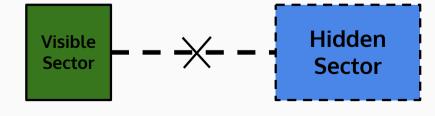
- ▶ Complete, renormalisable theory which looks like it could be consistent all the way up to the Planck scale $\mathcal{O}(10^{18}~\text{GeV})$
- ► Fully consistent with nearly all experimental data
- ► Some problems remain however:
 - ► Gauge hierarchy problem: why is the Higgs so light?
 - ► Neutrino oscillations: why are neutrinos so light? Where does their mass come from?
 - ► Inconsistency with the current state of the universe: baryogenesis in the early universe requires more CP violation
 - Is unable to explain gravity and the existence of dark matter



Beyond the Standard Model: where to sail?

New physics is either:

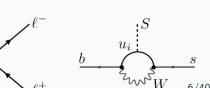
- Too heavy to have been seen (~TeV or more: SUSY neutralino, resonant leptogenensis HNL...)
- Too weakly interacting to have been seen (much less than even neutrinos: hidden sector mediator, oscillation leptogenensis HNL...)


Beyond the Standard Model: what to look for?

New physics **exist** but we haven't seen them yet, they may interact only very weakly with the SM

ightarrow live in a **Hidden Sector** and interact with the SM through mediators *portals*

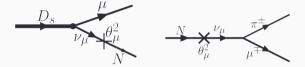
$$\mathcal{L}_{\mathrm{World}} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{Mediator}} + \mathcal{L}_{\mathrm{Hidden}}$$


Beyond the Standard Model: portals to the hidden sector

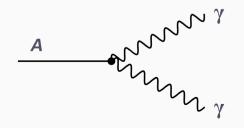
- ► Vector Portal ("Dark Photon")
 - Field ${\bf A}'_{\mu}$ with strength ${\bf F}'_{\mu\nu}$ mixes with coupling ϵ with SM ${\bf F}'^{\mu\nu}_{{\bf Y}}$

- ► Scalar Portal ("extra scalar")
 - ightharpoonup Extra scalar ${f S}$ couples to $|\phi|^2$ of the Higgs field

$$\mathcal{L}_{\mathsf{Scalar}} = (\lambda_i S_i^2 + g_i S_i) (\phi^\dagger \phi)$$



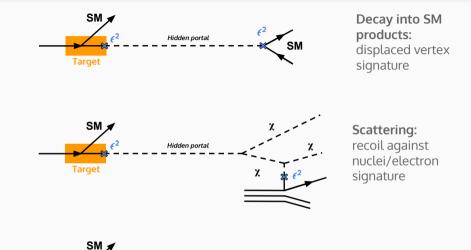
Beyond the Standard Model: portals to the hidden sector


- ► Neutrino Portal ("Heavy Neutral Lepton")
 - lacktriangle Extra neutral singlet fermions ${f N_I}$ with Yukawa coupling ${f F}_{lpha {f I}}$ to SU(2) doublets ${f L}_lpha$

$$\mathcal{L}_{\mathsf{Neutrino}} = F_{\alpha I}(\bar{L}_{\alpha} \cdot \tilde{\phi}) N_{I}$$

- ► Other, non-renormalisable couplings
 - ► Example: Pseudo-Nambu-Goldstone Boson such as an Axion-like-particle (ALP) from some broken symmetry at some higher scale

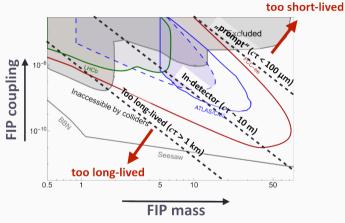
$$\mathcal{L}_{\mathsf{ALP}} = \frac{A}{4f_A} \epsilon^{\mu\nu\lambda\rho} F_{\mu\nu} F_{\lambda\rho}$$



Beyond the Standard Model: how to look for Hidden sectors?

Hidden portal

Target

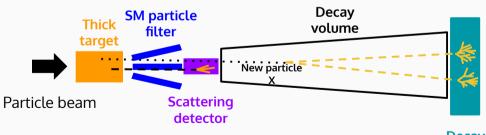

Indirect detection:

energy/momentum

missing

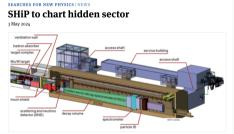
Reaching the unreachable seas

- ► Particle will have a lifetime
- ► Feebly interacting particle will have a lifetime of

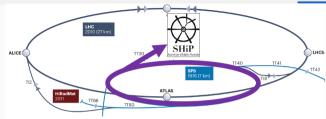

$$au \propto rac{1}{m^n}$$

- (n = 1...5, depending on theportal)
- \rightarrow Sweet spot for FIP searches around $c\tau \sim 10-100 \,\mathrm{m}$

Reaching the unreachable seas


- ► A high intensity particle beam is needed
 - lacktriangle Search for rare events ightarrow particular attention to be given to background suppression
- ► A long baseline is needed
 - ► Give space for FIPs to decay
- ▶ Presence of high-precision scattering detectors and decay spectrometers
 - ► Allow observation of faint events

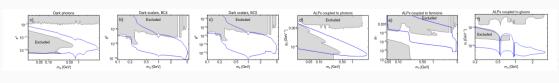
Beyond the Standard Model: how to sail?



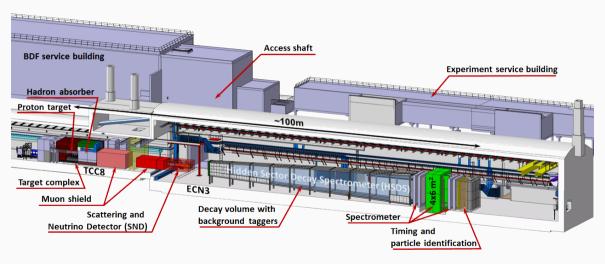
Full speed ahead Layout of the SHiP experiment, with the target on the left and the experiment in the ECN3 hall. Credit: SHiP collab.

In March, CERN selected a new experiment called SHiP to search for hidden particles using high-intensity proton beams from the SPS. First proposed in 2013, SHiP is scheduled to operate in the North Area's ECN3 hall from 2031, where it will enable searches for new physics at the "coupling frontier" complementary to those at high-energy and precision-flavour experiments.

- ► SHiP/NA67 experiment approved in March 2024
- Use SPS accelerator protons at the in-construction Beam Dump Facility (BDF) in the CERN North Area
 - ► Facility already under construction
 - ► Data taking begins in 2032

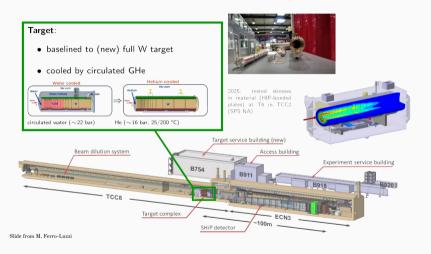

Beyond the Standard Model: the SHiP experiment

- \blacktriangleright High-intensity beam dump experiment: 6×10^{20} protons on target over 15 years
- ► Globally unique physics potential: large D and B meson fluxes
- ► Sensitivity to a broad variety of Feebly Interacting Particles (FIPs)
 - ► HNLs
 - ► Axion-like-particles (ALPs)
 - Dark scalar Higgs-like particles
 - ► Light dark matter (LDM)

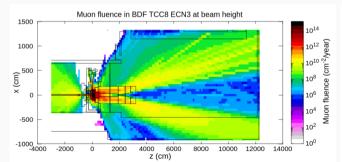

 \implies if you have a FIP model in the general $\mathcal{O}(100\,\text{MeV})$ - \sim few GeV, chances are, SHiP will have record sensitivity to it

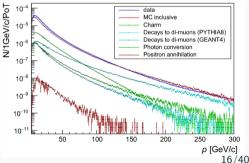
- lacktriangle Unprecedented measurements of $u_{ au}$, F_4 and F_5 , flavour physics, lepton universality, pdfs and many more
- ► Will operate in a zero-background environment

The BDF/SHiP beamline


SHiP upstream facilities

The SHiP target complex

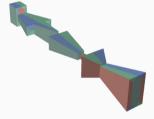


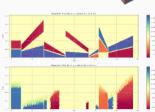

- Heavy material needed to increase heavy flavour production cross section
- Intensities are extremely high $(4 \times 10^{13} \text{ protons})$ on target per spill)
 - ightarrow cooling required
- Hadron absorber located at the back of the complex

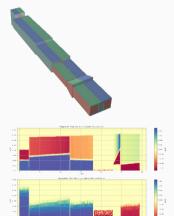
SHiP muon shield

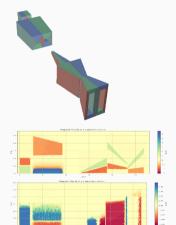
- ▶ The extremely high muon fluxes from the beam dump impose active muon filtering
- ▶ Idea: sweep away muons through a set of magnets
- ► Magnet stages with many different magnets used in order to sweep away all possible angles and energies
- ► Modular design preferred to allow for adjustments if needed

SHiP muon shield: 3 variants

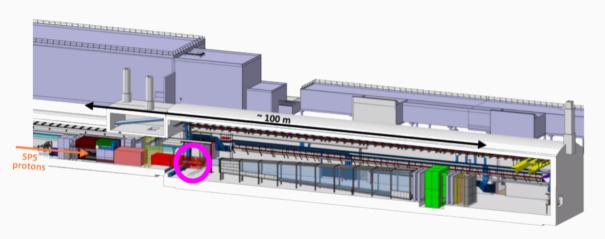

Minimal Iron Yoke "TokaNut"


Only warm coils, saturated iron

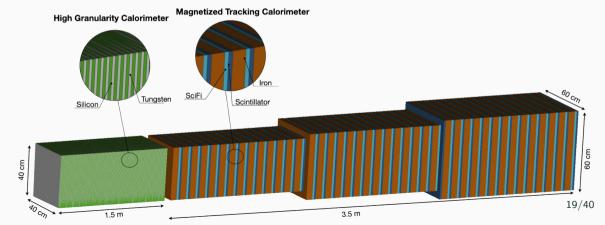



Hybrid (with SC) "SuperNut"

Superconducting coil in section 1, then minimal saturated iron



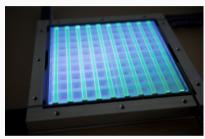
Scattering neutrino detector at SHiP (SND@SHiP)



Interlude: neutrino physics at SHiP

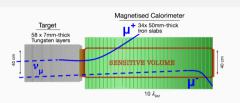
- ► Side effect of the beam dump: a high fluence of neutrinos of all flavours is produced
- ▶ They can be a source of background but can also be studied specifically
- ► Leverage scattering detector to observe all neutrinos flavours

SND@SHiP: the three technologies

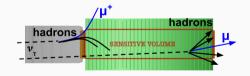


Silicon strip PCB for the HGC (IJC, Orsay for CALICE)

Lausanne for SND@LHC)



SciFi detector for MGTC (EPFL, Scintillator tiles with WLS fibres (Ghent from SOLID)

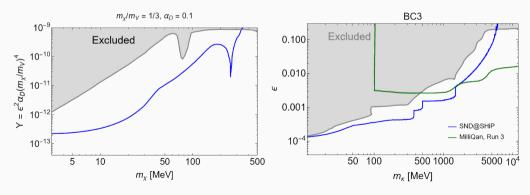

Neutrino observation in SHiP

- $ightharpoonup
 u_{\mu}$: straightforward, nothing come in and a track comes out, tell apart parity using muon bending
- $ightharpoonup
 u_e$: more challenging, nothing come in and an electromagnetic shower takes place inside of your detector. Parity is complex to identify.
- u_{τ} : challenging as τ s have many possible decays, look for nothing coming in and a vertex associated to multiple tracks. Parity obtained by looking at charge of everything through the bending.

New physics measurements from SND@SHiP

- A total of 26 ν_{τ} candidates have been observed, **ever**
- ightharpoonup has never been observed, **ever**
- The high neutrino flux allows for the measurement of strange quark nucleon content via charm production in

 v̄ interactions
- ▶ The tau neutrino flux allows for the determination of the never-before measured F_4 and F_5

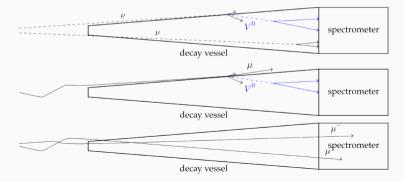

	CC DIS (W HGC)	Charm CC DIS (W HGC)	CC DIS (Fe MGTC)	Charm CC DIS (Fe MGTC)
N_{ν_e}	6.8×10^{4}	4.1×10^{3}	1.6×10^{5}	9.8×10^{3}
$N_{\nu_{\mu}}$	2.0×10^{5}	8.7×10^{3}	4.6×10^{5}	2.0×10^{4}
$N_{\nu_{\tau}}$	2.1×10^{3}	1.2×10^{2}	5.1×10^{3}	2.8×10^{2}
$N_{\overline{\nu}_c}$	1.4×10^{4}	7.4×10^{2}	3.7×10^{4}	1.9×10^{3}
$N_{\overline{\nu}_{\mu}}$	4.4×10^{4}	1.7×10^{3}	1.1×10^{5}	4.1×10^{3}
$N_{\overline{\nu}_{\tau}}$	1.5×10^{3}	8.6×10^{1}	3.8×10^{3}	2.1×10^{2}

$$\begin{split} \frac{d^2\sigma^{\nu(\bar{\nu})}}{dx\,dy} &= \frac{G_F^2ME_{\nu}}{\pi(1+Q^2/M_W^2)^2} \Big\{ (y^2x + \frac{m_{\tau}^2y}{2E_{\nu}M})F_1 + \\ &\Big[(1-\frac{m_{\tau}^2}{4E_{\nu}^2}) - (1+\frac{Mx}{2E_{\nu}})y \Big] F_2 \pm \Big[xy(1-\frac{y}{2}) - \frac{m_{\tau}^2y}{4E_{\nu}M} \Big] F_3 + \\ &\qquad\qquad\qquad \frac{m_{\tau}^2(m_{\tau}^2+Q^2)}{4E_{\nu}^2M^2x} F_4 - \frac{m_{\tau}^2}{E_{\nu}M} F_5 \Big\}. \end{split}$$

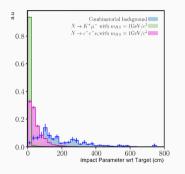
Light dark matter physics at SHiP

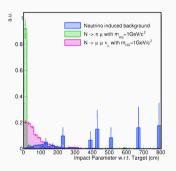
- ▶ Dark matter can scatter onto the SND detector's electrons
- ► Signal: EM shower from neutral current scattering
- ► Reject neutrino background through topological selection enabled by the high-granularity detectors

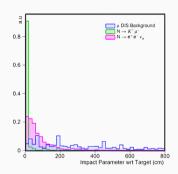
The only threat to SHiP: background



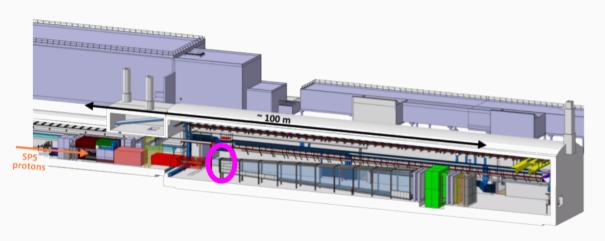
SHiP background taggers


- ► A set of background taggers will be used to allow SHiP to reach its 0-background goal
 - ► The Upstream background tagger
 - ► The Surround background tagger
- ▶ 3 backgrounds are significant: neutrino background, muon DIS background and muon combinatorial



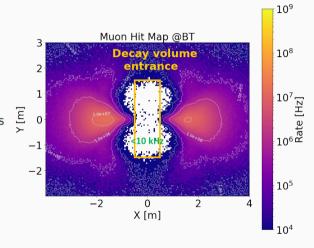

0-Background at SHiP

- ▶ Through simple cuts, almost all of the background can be removed whilst preserving the signal integrity
- ► Full background optimisation is still ongoing

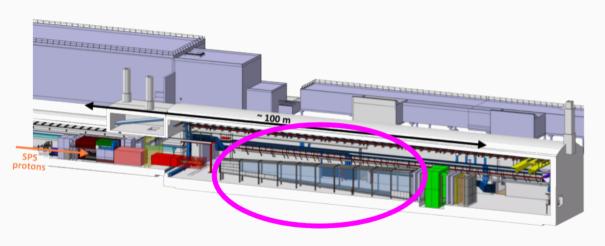


Background source	Expected events
Neutrino DIS	< 0.1 (fully) $/ < 0.3$ (partially)
Muon DIS (factorisation)	$<5 imes 10^{-3}$ (fully) $/ < 0.2$ (partially)
Muon combinatorial	$(1.3 \pm 2.1) \times 10^{-4}$

Upstream Background Tagger (UBT)

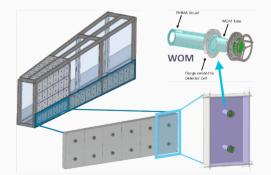


Upstream Background Tagger (UBT)



- ► Window placed at the start of the decay volume to tag muon background
- ► Needs to withstand variable rates during both operation and commissioning
- ► A panel of technologies considered: straws (for cold regions), SciFi and scintillator tiles (for hot regions)
- ► Optimisation ongoing, limitations in the hot regions primarily determined by readout electronics

Surround Background Tagger (SBT)

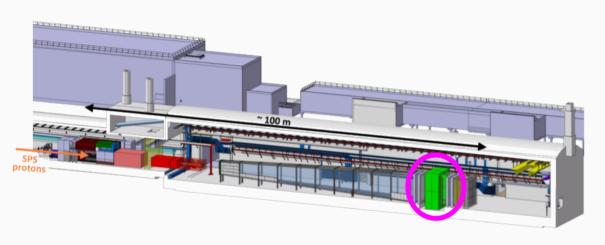


Surround Background Tagger (SBT)

- ► SBT surrounds the helium-filled decay volume
 - lacktriangle Used to tag charged particles from outside and u/μ interactions in the vessel wall and helium
- ▶ 780 compartments filled with liquid scintillator ($\sim 145\,000\,\mathrm{L}$ of LAB)
 - ► Readout with Wavelength-shifting-optical modules (WOMs) in conjunction with SiPMs (40 SiPMs per module)
- ightharpoonup > 99% efficiency and $\sim 1\,\mathrm{ns}$ timing resolution

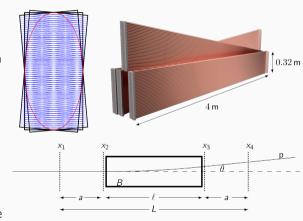
The signal detectors in SHiP

SHiP signal taggers

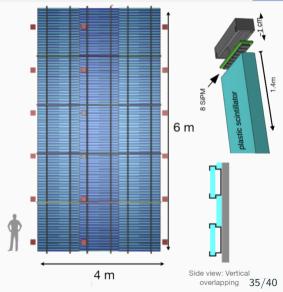


- ► The signal detectors seek to produce tracks and vertices of final state decays
 - ► Need good position resolution
- ► They are also used to the filter background
- ► For example for an ideal HNL decay:

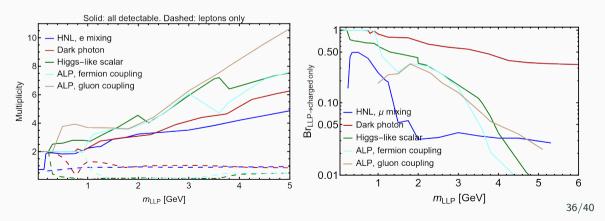
SHiP Decay Spectrometer



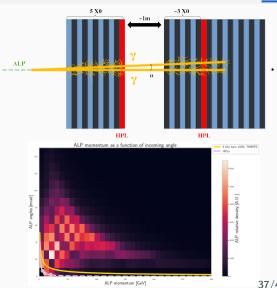
SHiP Decay Spectrometer


- ► 4-station straw tracker coupled with an LHCb-style dipole magnet
 - ▶ Bending radius $0.6 0.8 \, \mathrm{T}$ m, nominal on axis $0.15 \, \mathrm{T}$
- ▶ Low rate ($< \mathcal{O}(10\,\mathrm{kHz})$)
- ▶ Very large sensitive region: $4 \times 6 \, \mathrm{m}^2$, $20 \, \mathrm{m} \varnothing$, $36 \, \mathrm{\mu m}$ thick coated PET film at $1 \, \mathrm{bar}$
- \blacktriangleright 9600 straws in planes arranged in a y-u-v-y setup with a 5° stereo angle

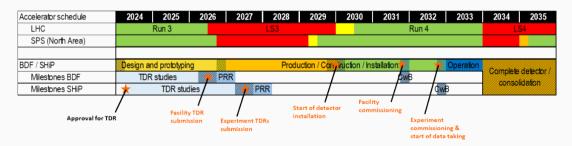
SHiP Timing Detector


- ► 3 columns of 110 long bars with few cm overlap
- ▶ Used to limit combinatorial background
- ▶ Timing resolution $\leq 100 \, \mathrm{ps} \, (\leq 50 \, \mathrm{ps})$
- ► Scintillator bars + 8 SiPMs per side
- ► Main challenge here: SiPM + front end electronics optimisation

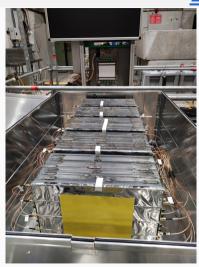
Interlude: decays at SHiP


- ► For higher mass NP particles, higher multiplicity is expected
- ▶ The fraction of purely charged decays is accordingly reduced
- ▶ Induces requirements on the calorimeter which needs to complement the tracker

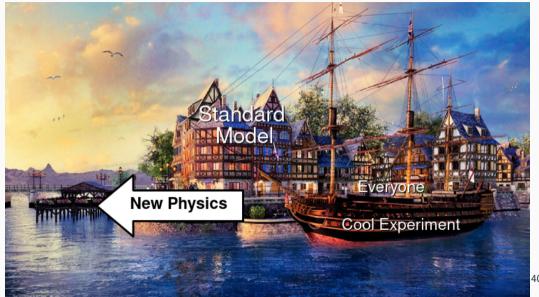
SHiP Calorimeter System


- ► Hadronic and an electromagnetic calorimeter
- ► PID performance essential for background rejection
- ► Uses the SplitCal concept to allow for the reconstruction of neutral final states
 - Scintillator bars and SiPMs for energy reconstruction, High-Precision Layers for shower directionality reconstruction
 - ► Allows for the reconstruction of neutral final states
 - Use of thin scintillator bars to further. increase angular resolution
- ► Angular resolution $\mathcal{O}(\sim 5\,\mathrm{mrad})$ at $10\,\mathrm{GeV}$

SHiP schedule

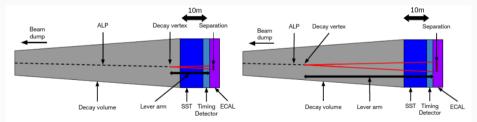

- ▶ Beam Dump Facility (BDF) to be built in LS3 (construction has already begun)
- ► Technical Design reports in 2-3 years
- lacktriangle Data taking starts in 2032 \sim 2 years before LS4
- ► The time scale before LS4 will already allow SHiP to set world records in sensitivity

Conclusion

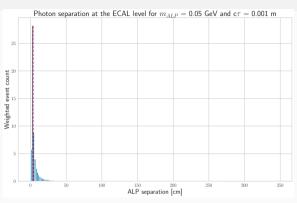


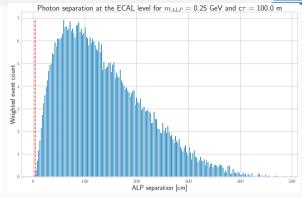
- ▶ The energy frontier is already quite explored \rightarrow HL-LHC and FCC go even further in that direction
- ► Lack of new physic found until now strongly motivate searches in other directions
- ▶ BDF/SHiP has a wide and unique physics program as a beam dump experiment
 - ► Has defining sensitivity to both neutrinos and FIPs
- \blacktriangleright Approved and to be built in the coming \sim 7 years
- Optimisation is currently taking place in preparation for TDR

All aboard!



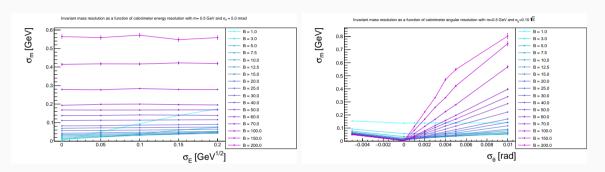
Backup: $\gamma\gamma$ separability


- Separation crucial for $\gamma\gamma\to$ no separation, no signal!
 - Needs to be verified
- ► Separability generally favoured by lower boost, higher mass and shorter lifetimes
- ▶ In the following Separation assumed possible if both showers separated by at least $2R_{\rm M}$ (3.2 cm in lead). The decay taken at end of the decay vessel, with the ECAL $10\,{\rm m}$ downstream. Consistent with NA62 separation selection.



(a) Effect of a short lever arm for a late decaying (b) Effect of a long lever arm for an early decay-ALP in particle separation: the separation is re- ing ALP in particle separation: the separation is duced.

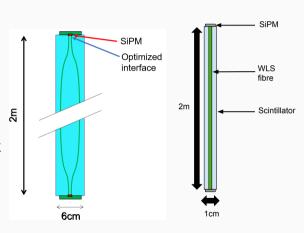
Backup: $\gamma\gamma$ separability


 $m_{\rm ALP}=50\,{\rm MeV}$ mass and $c\tau=1\,{\rm mm}$

 $m_{\rm ALP}=250\,{
m MeV}$ mass and $c au=100\,{
m m}$

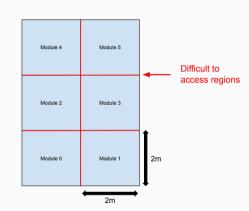
 $\label{eq:ALP} \text{ALP} \rightarrow \gamma \gamma \text{ separation ensured almost everywhere, only under tension in } m_{\text{ALP}} = 50 \, \text{MeV mass}$ and $c\tau = 1 \, \text{mm}$ (and the distance to the end of the DV will probably be longer + we can probably implement better separation techniques).

Backup: Detector characteristics in model independent $X o \gamma \gamma$ decays



ightarrow angular resolution valuable in all circumstances, value degrades at low boost, energy resolution becomes especially valuable for low B!

Backup: SHiP PID Detector: scintillators


- ➤ Two scintillator bar types in proportions to be determined (between 15 360 and 96 000 channels)
 - ► Each bar type has a corresponding SiPM:
 - ▶ (ECAL+HCAL) Wide bars: large $6 \times 6 \, \mathrm{mm}^2 SiPMs$, many pixels, large signals (up to $\mathcal{O}(100s)\mathrm{mV}$), large capacitance (up to $\mathcal{O}(2\,\mathrm{nF})$). Baseline: S14160-6050HS SiPM, Broadcom/FBK SiPMs to be studied
 - ▶ (ECAL) Thin bars: smaller $\sim 1.3 \times 1.3 \, \mathrm{mm^2}$ SiPMs, fewer pixels, smaller signals (up to $\mathcal{O}(10s)\mathrm{mV}$), smaller capacitance (up to $\mathcal{O}(10s)\mathrm{pF}$)). Baseline: S13360-1325PE SiPM.

Backup: the problem of dead space and ease of access

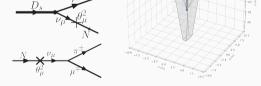
- ► (Known) concerns were pointed out in our mechanical design
 - One of the largest fixed target calorimeters ever conceived
- lacktriangle Experiment will run for \sim 15 years, there will be problems
- ► In the current (basic) configuration, three main issues
 - Difficulty to cool (cooling needs are being reassessed, still probably needed)
 - ▶ Difficult channel access → cassette scheme? Laver-wide of module wise?
 - lacktriangle Dead regions ightarrow Need to be minimised absolutely
- ► All three points are related
- ► Thought of a few alleyways to try to resolve these issues

Backup: people at the moment

Role	Person	Comments
Project leader	Walter Bonivento	_
Integration/Installation	Matei Climescu/Rainer Wanke	Soon hopefully also Frank Steeg
Power/Control/Readout/Monitoring	Matei Climescu	_
Software	Matei Climescu/Walter Bonivento	_
Safety	Matei Climescu	_
CAD	Matei Climescu	Hopefully someone else soon (Fabian, Frank?)
GEMs/HPLs	Matei Climescu/Kirill Skovpen	Treated separately for now, will integrate
Test Beam	Sebastian Ritter/Claudia Delogu/Matei Climescu	_

Backup: beyond the Standard Model, what to look for?

 M_N

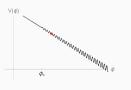


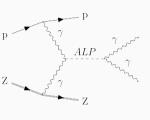
Heavy neutral leptons:

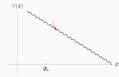
 y_N

- Right-handed neutrinos
- Explain neutrino mass scale (type I seesaw)
- Allow leptogenesis

Oscillation leptogenesis

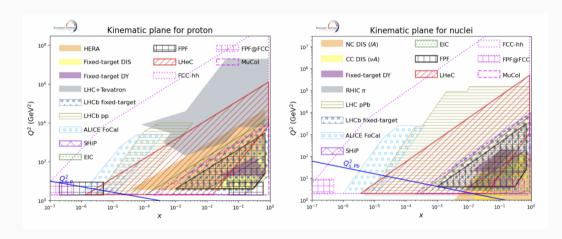



105 106 107


HNL mass [GeV]

Axion-like-Particles:

- Generic (pseudo-) Nambu-Goldstone boson emerging from broken global symmetries
- May offer a relaxation solution to the hierarchy problem
- May mediate interactions to a Hidden Sector



Backup: PDF contributions from SHiP

