ROOT:

introductory tutorial

Marcella Bona

for QMUL undergraduates and Particle Physics projects
October 4™ 2017

Thanks for the help from
Rebecca Lane, Alex Owen, Tom Stevenson
Eddie Thorpe and Cozmin Timis

Based on material from
Adrian Bevan, Marcella Bona,
marcella bona Alex Owen and Cozmin Timis 1

Aims of this tutorial \

The aim of this tutorial is to give you a smooth start in using ROOT.
By the time you have worked through this you should be able to:

« connect to our PPRC computer that has ROOT installed
« start ROOT and get out of it

* use ROOT interactively

 know how to use histograms, ntuples, files efc ...

* write and run a simple macro

 fit to histogram data

* know where to go for more information

This set of lectures has been tested most recently for ROOT 5 and 6

marcella bona

ROOT \

* What is ROOT?
C++ based analysis toolkit developed at CERN
and used in most (if not all) particle physics/high energy analyses
code available and downloadable on the web
actively developed by many people
you do not need to learn another syntax to use it:
you can write small programs called root macros
and they are just C++ programs that can run
within the ROOT environment or standalone
using the ROQOT library
=» manual is large (over 300 pages)
=» lots of material online, but it could be quite dispersive
=>» some example macros are available in the ROOT
package itself
=» some good web based courses available as well

marcella bona 3

ROOT \

* What is ROOT?
C++ based analysis toolkit developed at CERN

e Useful resources
» User Guide etc: down!

http://root.cern.crﬂ/

HOW-TOs, Tutorials and class structure on web

marcella bona

http://root.cern.ch/

One step back: getting to ROOT \

Let's try to give you the possibility to use ROOT on QMUL machines:

ROOT is installed on a linux computer made available to you by Alex
and Cozmin. The name of the computer is:

students2.ph.gmul.ac.uk

to get there you need to use a program that connects the computer
you are using to this linux machine over the QMUL network:

MobaXterm

So now start mobaXterm on the computer you are at.
If you need to connect from a linux machine you need to do:

ssh -X username@students2.ph.gmul.ac.uk

marcella bona

One step back: getting to ROOT

This is how the screen looks like once started:
- Moha}{term_ - O

Terminal Sessions View Xserver Tools Games Settings Macros Help

W 9 B & g H W O B 58 <X @ O

X server Exit

Session Servers Tools Games Sessions View Split Fullscreen MultiExec Tunneling Settings Help

[Sessions | ¢ Tools Macros J 1. mome/mobaxterm x %

B : I
o MNew session * MobaXterm Personal Edition v6.5 =
(Unix utilities and X-server on Gnu/Cygwin)
®
Saved sessions computer drives are accessible through the /drives path
g o . DISPLAY is set to 161.23.131.94:0.0 _
W7 students2.ph.gmul.ac.uk (mis) [S5t ; n using SSH, your remote DISPLAY 1s automatically forwarded
command status 1s specified by a special symbol (v or x)
MobaXterm Personal Edition. The Professional edition
LL ou to customize MobaXterm for your company: you can add
your own logo, your parameters, your welcome message and generate
either an MSI install
We can also modify Mo
For more information:
[2013-11-15 14:54.12]
[apwBS81.CLN-TS-PHY2-025] >]
< >

'_:_',' Generate HTML web page

UNREGISTERED VERSION - Flease support MobaXterm by subscribing to the professional edition here: http: (imobaxterm. mobatek, net

marcella bona

One step back: getting to ROOT \

Click on “Session” so you'll get:

® B B K B EH 2 & B

SSH Telnet Rsh Xdmep RDP VNC FTP SFTP Serial Filefurl Shell

I
5 Choose a session type...

marcella bona

One step back: getting to ROOT

Select ssh as session type and input the computer name in the remote
host box and the username in the username box

Session settings

By B K % & @ e W

SSH | Telnet Rsh Hdmep RDP VNC FTP SFTP Serial File/Url Shell

?‘ Basic 55H settings

Remote host ™ |Students2.ph.gmul.a [+ Specify username Port 22 %

¥ Advanced 55H settings . Terminal settings | .y Bookmark settings

¥ 11-Forwarding Compression Remote environment | Interactive shell “
Execute command [[] Do not exit after command ends
Display SFTP browser [] automatically follow current 55H folder path {experimental)
[(use private key Extra option (T m
[[JEnable Google 2-step authentication Y x

ol LY
T

[] Connect through SSH gateway

4r

22

Use private key

W 0K ¢ cancel

marcella bona

One step back: getting to ROOT

Click OK and type your password when prompted

gl MDDE Xterm = =

Terminal Sessions VWiew Xserver Tools Games Settings Macros Help

5 QY B 4 w B2 9 O B B K @ N O

Session Servers Tools Games Sessions View Split Fullscreen MultiExec Tunneling Settings Help ¥ server Exit
¢ Sessions | [P Tools Macros B | home/mobaxterm Cd 2 students2 ph.gmul - % D
B new session y o q
- * MobaXterm Personal Edition v6.5 _
(Unix utilities and X-server on Gnu/Cygwin)
®
{ Saved sessions) computer drives are accessible through the /drives path

DISPLAY 15 set to 161.23%.131.94:8.8
'f students2.ph.gmul. ac.uk (timis) [S5f) using S5H, your remote DISPLAY 1s automatically forwarded
B®| students2.ph.amul.ac.uk (timis) [55¢ » E: command status 1s specified by a special symbol (v or x)
rtant:
MobaXterm Personal Edition. The Professional edition
you to customize MobaXterm for your com : you can add

your own logo, r parameters, your welcome me: ge and generate
either an MSI installation package or a portqb1e executable.

We can also modify MobaXterm v

For more 1nf0rmat10n http://

1cs Research Centre, Queen Mary, University of Lo
' STEM IS AVAILAELE TO AUTHORIZED IJ‘::ER‘:: ONLY

';_', Generate HTML web page

UNREGISTERED VERSION - Flease support MobaXterm by subscribing to the professional edition here: http: (fmobaxterm.mobatek. net

marcella bona 9

Few linux/unix commands \

At this point you are on a linux shell.
Basic commands to survive a linux shell:
- “folders” in linux are “directories”

1s <dir>

cd <dir>

mkdir <dir>

cp <file> <newfile>

mv <file name> <new file name>
more <file>

less <file>

g (un) zip <file>

tar -cvf somefile.tar <dir>
tar -xv£f somefile.tar

tar -cvzf somefile.tgz <dir>
tar -xvzf somefile.tgz

marcella bona

list the content of a directory

change directory to the specified one
make a new directory

make a copy of a file

rename a file

file viewer

file viewer (more versatile than more)
(un)zip a file up

make a tar file (archive files or directory trees)
unpack a tar file

make a tar file and zip it up in one go
unpack a zipped tar file

10

Getting to ROOT... \

In the linux shell, we need to set up things in order to use root:
enter the commands:

> scl enable devtoolset-2 python27 bash

> module load root

this allows root to be available to use and also to sychronise the
compiler with the root version.

This allows you to use root 6

marcella bona 11

Getting to ROOT... \

Root 6 is relatively new and includes a number of changes
with respect to the previous versions. Hence there are less
tutorials and help online.

You can use the previous version root 5.34 and in that case
you can do:

>exit
> module unload root
>module load root 5.34.00

or you can close the mobaXterm and restart again and do
directly:

>module load root 5.34.00

marcella bona 12

Back to ROOT.. \

ROOT is a data analysis toolkit that has one main application

root the main program that you run

* once the environment is set like detailed in the previous slides
* just launch the executable writing:

> root

then you will be in the ROOT environment
An useful argument to be added to the executable name is:

> root -1

this avoids the splash screen
and makes the start of root a little quicker
especially if the connection is slow

marcella bona 13

Back to ROOT.. \

ROOT is a data analysis toolkit that has one main application

root the main program that you run

* once the environment is set like detailed in the previous slides
* just launch the executable writing:

> root
then you will be in the ROOT environment

* ROOT (sort of) uses C++ syntax:
* you can give C++-style commands within the ROOT environment
* when you give interactive commands
you are using an interactive C++ interpreter (CINT or Cling)
* similarly we will see that we can run your program (root macro)
without compiling, hence using the interpreter

marcella bona 14

CINT/Cling commands \

« CINT/Cling commands always start with a dot “.
¢ e.0:

.q quit, get out of the interactive ROOT session

.? help,; get list of available commands

marcella bona

15

CINT/Cling commands \

« CINT/Cling commands always start with a dot “.
¢ e.g:

.x hi.cc run a macro

.L hello.cc load a macro in order to use
the functions in the macro

hello (“marcella”) run the function with the

required argument

wget https://www.dropbox.com/s/rvvn70ib9vicjOg/hi.cc
wget https://www.dropbox.com/s/pcpqg1in63cje32d/hello.cc

marcella bona

16

CINT/Cling commands \

* interactively you can also use C++ syntax:
— declarations of objects and use of functions
— for example:
* open a root file:

TFile *myfile = TFile: :Open("signal.root")

wget https://www.dropbox.com/s/ycryfékhdgic8ge/signal.root
wget https://www.dropbox.com/s/02amcswqg4ts7ik/continuum.root

marcella bona 17

CINT/Cling commands \

* interactively you can also use C++ syntax:
— declarations of objects and use of functions
— for example:
* open a root file:

TFile *myfile = TFile: :Open("signal.root")

this is declaring an object of type TFile
that is a file with an extension .root

root files are ROOT specific files and they are use to contain data
in different ROOT formats,
l.e. as different ROOT objects.

marcella bona 18

CINT/Cling commands \

* interactively you can also use C++ syntax:
— declarations of objects and use of functions
— for example:
* open a root file:

TFile *myfile = TFile::Open("signal.root")
myfile->1s()

the TFile object | declared is a pointer

hence | need to call the functions implemented in the TFile class
with the arrow —

Is() just lists everything is in the root file

https://root.cern.ch/doc/master/classTFile.ntml
marcella bona 19

https://root.cern.ch/doc/master/classTFile.html

Running ROOT \

e root start a root session

-1 suppress the ‘splash screen’
The splash screen is the window that pops up
for a few seconds when you start root. By
suppressing this you start root a little faster.

-b run in batch mode [no graphics displayed]
This will speed things up a lot (especially if you
are working from a remote machine).

-q quit root when macro finished
root -1 -b —-gq myMacro.cc (“arguments”)

« Can open a ROQT file when starting a session:
root -1 signal.root

the pointer will be called fileO
marcella bona - 20

Some basic concepts |

* Histograms:
* Plots of data as a function of 1, 2 or 3 variables
* Show distributions of relevant variables
and correlation between the variables
* ROOT objects: TH1

https://root.cern.ch/doc/master/classTH1.html

marcella bona

21

https://root.cern.ch/doc/master/classTH1.html

Some basic concepts |

* Histograms:
* Plots of data as a function of 1, 2 or 3 variables
* Show distributions of relevant variables
and correlation between the variables
* ROOT objects: TH1

https://root.cern.ch/doc/master/classTH1.html

* Ntuples:
* A more complicated data format that stores information on an
event or candidate basis:
* creates a matrix-like structure where:
* a row contains the values of the variables in a
single “collision event” or “composite particle candidate”
* a column contains the values of a single variable
describing a specific characteristic of the event/particle
* ROOT object: TTree

https://root.cern.ch/doc/master/classT Tree.html

marcella bona

22

https://root.cern.ch/doc/master/classTH1.html
https://root.cern.ch/doc/master/classTTree.html

ROOT Data Types \

Similar to C++;

— Basic types: first letter is capitalised and have suffix “_t":

int — Int t float — Float_t double — Double t
— Names of root classes start with “T” e.qg.

TDirectory, TFile, TTree, TH1F, TGraph, ...

« Some ROOQOT types (classes):
— TH1F - 1D Histogram filled using floating precision data
— TH1D - 1D Histogram filled using double precision data
— TFile — a file containing persistent data
— TDirectory — a directory (useful to keep a TFile tidy/organised)
— TTree — can store per-event info in branches and leaves
— TF1 — 1-dimensional function, TF2, ...
— TString — a ROOQOT string object (better than a C/C++ string)

marcella bona 23

ROOT Data Types |l \

Difference between Float _t and float?”?

int — Int_t
float — Float t
double — Double t

- The ROOT data types are used in order to make user code and
ROOT code more platform independent.

-You probably don’t care or need to worry about the details of this

- However, in general you should try and use the ROOT defined
types where possible

marcella bona 24

Tab Completion \

Tab-completion of commands and filename calls can help in finding
available commands, e.qg.

TH1F hl(“hl”, “title”, 50, 0.0, 10.0);
- define a histogram with 50 bins and an x axis
range of 0.0-10.0

hl. [tab]
—> lists all available functions of a TH1F object
TH1: : [tab]

—> list all available functions of a TH1 object

TH1 : : SetName ([tab]
—> Show the available function prototypes e.q.

root [0] TH1: : SetName ([tab]
void SetName(const char* name) // *"MENU*

n

so the syntax to change the name of this histogram is just:
marcella bona hl.SetName (“mYNeWName ”)

25

Histograms \

1, 2 and 3D binned plots of the distribution of variables
— good for visualising how the data are behaving:

types
TH1F TH1D
TH2F TH2D
TH3F TH3D

- the F/D refers to the data type used
either Float t or Double t

- these are the ROOT classes so in the code we need to
declare a TH1 object and then we can access all the functions
or methods implemented in the TH1 class

TFile *myfile = TFile::Open('"signal.root")
myfile->1s ()

TH1D* Bmass = (TH1D*)myfile->Get ("mecdis")
Bmass->Draw ()

marcella bona 26

Histograms \

TFile *myfile = TFile: :Open("signal.root")
myfile->1s ()
TH1D* Bmass = (TH1D*)myfile->Get ("mecdis")

Bmass->Draw () ///(

Get() function is in TFile class
and returns a pointer to a generic TObject

hence we can check what kind of object was stored in
the file with Is() and then we can istantiate it explicitly:

in this case, the objectis a TH1D so | declare a pointer
to a TH1D and | assign to it the object from the file

marcella bona 27

Histograms \

1, 2 and 3D binned plots of the distribution of variables

= If you have a histogram pointer called myHist
and want to see what it looks like you Draw () it
root[10] myHist->Draw ()

/ el
th t t Draw() member function is
© root promp called to show the histogram

The histogram object with
variable name myHist

(ZNMe vic)
(83}
(e

On-res data 1[

Entries/|
N
[}
(e}

150

histogram shown as data points i
with background curves added =
on top of the histogram —

50

O \\I‘II\I‘\I\I‘I\\I‘I\\I‘I\\\‘\\\\‘I\II‘I\\I

5.2 521 5225235245255265.27 5.28 5.29 ?.3
marcella bona my (GeV/c')

28

NTuples \

* data structure on an entry by entry basis (e.g. candidate or event)
Ttree (or TChain) — the same kind of thing — both are NTuples

You can
* loop over the events one by one to analyse data
* draw variables or combinations of variables
* apply selection cuts on variables as you draw them
* create and fill histograms with the values of the variables

* NTuples are a lot more flexible than histograms as you can retain the
correlations between the variables and the view of the complete
characteristics of the event/candidate

* again you need to declare an object of the class TTree

TTree* tree = (TTree*)myfile->Get("selectedtree") ;

marcella bona

29

NTuples \

* you need to declare an object of the class TTree

TTree* tree = (Ttree*)myfile->Get ("selectedtree")
tree->Print ()

* the Print function of the TTree class allows you to see all the variables
contained in the TTree/NTuple.

marcella bona 30

Files |

persistence = save data (histogram, ntuple, object) in a file

Aroot file is known as a TFile. That is the class name for the object.
From your root prompt you can open the TFile signal.root using

root[0] TFile signal ("signal.root")

The content of the file can be seen by using the 1s () member function:

root [1l] signal.ls()

TEFile**
TEFile¥*
KEY: TH1D
KEY: THI1D
KEY: THI1D

KEY: TTree

marcella bona

signal.root

signal.root

cossphericity;1l cossphericity
photonlat;1 photonlat
piOmass; 1 piOmass

selectedtree;]1l Final variables tree

31

Files |

persistence = save data (histogram, ntuple, object) in a file

Aroot file is known as a TFile. That is the class name for the object.
From your root prompt you can open the TFile signal.root using

root[0] TFile signal ("signal.root")

The content of the file can be seen by using the 1s () member function:

root [1l] signal.ls()

TF1ile** signal.root :
. . a 1D histogram
TFile* signal.root ‘,———”'——
KEY: THID cossphericity;1l cossphericity
KEY: THID photonlat;1 photonlat
KEY: THI1D pilOmass; 1 piOmass
_ _ comment
object version number — /
. — | |
KEY: TTree selectedtree;1l Filinal variables tree

key object type key name a TTree object (an NTuple)

marcella bona 32

Objects in a file: e.g. TTree \

How do you get access to the persistent objects in a file? There are two
ways:

loads tree into memory

root [4] selectedtree < according to the key e.qg.
(const class TTree*const)0x852ff08 selectedtree
root [5] TTree * my7gnalTree = (TTree*)signal.Get("selectedtree")
object type pointer cast the returned pointer ~ US€ the key
(you need the ™' prefix) as the type you want name T[O get
the object

(assumes you know it)
The default is a TObject *

The second way is better as it will ALWAYS work for multiple open files —
you keep track of the pointers yourself and can do anything you want with
them! If you are only using a single file then you can use the first way to
access the stored objects when working interactively.

marcella bona 33

Histograms |

Declare with: " y
TH1F hl (arguments ..) bins min Xmax
Make your first 1D histogram: \) /

TH1F hl("h name", "h title", 10, 0.0, 10.0);
h name = key name of histo
h title =name which appears on plotted histogram

Now draw the (currently empty) histo:
hl .Draw () ;

Fill with a few entries: the number to fill the histogram with

hl.Fill(l.); / (default value is 1.0)

hl1.Fi111(3,10.7);
F

— X value to fill histogram at

Try drawing the histogram when you have a few entries
hl.Draw(); //do this occasionally to update the histogram

marcella bona 34

ROOT exercise 1 \

1) Open the files found at these links
signal.root
continuum.root
and look at the content of the file (use 1s () member function of TFile).

2) get pointers to the TTrees in each file — Print () the content of one of
them [they are the same structure — so there is no point in looking at both
of them ©)]

3) draw some of the variables:
hint — you can cut on variables when you draw them
mySignalTree->Draw (“aVar”) ;
mySignalTree->Draw(“aVar”, “aCut”, “same”)
e.g.
mySignalTree->Draw (“mes”)
mySignalTree->Draw (“mes”, Y“abs(de)<0.2”, Y“same”)

* Do the same for a few histograms e.g.
root [4] piOmass < can’t cut histograms

(const class THI1ID*)(0x87a3df8

root [D5 i0mass—->Draw
marcella bona o] p 0 35

Histograms from a TTree \

* When you draw a variable from a TTree you can fill a histogram

variable
name

means
make hist

hist name

N

mySignalTree->Draw ("mes>>tmphist");

tmphist->Draw ("e") ;

/

If you have already
defined the histogram
tmphist, then ROOT
will fill this for you
from the tree. If you
have not defined
tmphist ROOT will
make a guess as to
the axis ranges, and
will create a 100 bin
histogram for you.

Now root knows you have a histogram of name tmphist

tmphist is a pointer to a histogram made

to have the content corresponding to that of the tree

marcella bona

36

Histograms from a TTree (ll) \

mySignalTree->Draw ("mes>>tmphist") ;
mySignalTreel->Draw ("mes>>+tmphist") ;
mySignalTree2->Draw ("mes>>+tmphist") ;

tmphist->Draw ("e");

. means add to existing
histogram

By default you get a histogram with 100 bins. If you want to change this
you'll have to specify a histogram yourself; e.g.:

TH1F tmphist ("tmphist", "", 25, 5.2, 5.3);

mySignalTree->Draw ("mes>>tmphist") ;
tmphist.Draw("e") ;

marcella bona

37

Histograms made nicer \

Some useful functions to play with now that you’ve got a histogram

myHist.

myHist.
myHist.
myHist.
myHist.

SetFillColor (1)
SetFillStyle (0)
SetLineColor (1)
SetLineStyle (0)
SetLineWidth (1)

Change the fill colour.
Change the fill style.
Change the line colour.
Change the line style.
Change the line width.

Line colours and styles are described in the 'Graphical Objects Attributes'

section of the ROOT user guide.

myHist.SetFillColor (2)

or

myHist.SetFillColor (kRed)

marcella bona

kRed
kOrange
kYellow
kSpring
kGreen
kTeal
kCyan
kAzure
kBlue
kViolet
kMagenta
kBlack
kPink

Make sure you use
colours wisely! There is
nothing more annoying
than seeing a talk
projected onto a screen
with half a dozen
invisible lines!

Try and stick to 'safe’
colors like blue, red
and black. 38

Histograms made nicer (ll)

Some useful functions to play with now that you’ve got a histogram

myHist.SetFillColor (1) Change the fill colour.
myHist.SetFillStyle (0) Change the fill style.

myHist.SetLineColor (1) Change the line colour.
myHist.SetLineStyle (0) Change the line style.
myHist.SetLineWidth (1) Change the line width.

Line colours and styles are described in the 'Graphical Objects Attributes'
section of the ROOT user guide.

Fill styles

Available fill styles shown left

‘HHHHHMHHHHH”‘ - o
Aok . Lelele] lelels] i)

KACKS AKHKA 20 Jelelelslele]olelelq

Aotk ootk 100

oAk KRR 20

3016

Remember to give axis labels a sensible title: always label your axes!

myHist.SetXTitle("This 1s the x-axis")
myHist.SetYTitle("This 1s this y-axis")
marcella bona 39

Histograms made nicer (lIl) \

The default line style is kSolid. There are times when you will
want to change this to another value (either by integer or enum):
kDashed _———-
kDotted @ e
kDashDotted .=.-.

Sometimes it can be useful to mark points on a histogram using a
TMarker. There are various marker styles:

20 21 22 23 2

+ * O

i S

25 26 27 28 29 30

o X

1 6 7 9 10 11

marcella bona 40

2D Histograms \

THZ2F myHist ("h name", "h title", {O, 0.0, lO.g, 2({, -10.0, ZO.JO);
g a'g

X axis co-ordinates Y axis co-ordinates

* 2D histograms behave the same as 1D histograms

* have some interesting Draw() options

surf - draw a surface

surfl - draw a surface with colour contors

cont - draw a contour plot

contzO - draw a contour plot with the y axis scale shown

lego - draw a 2D histogram

box - draw boxes (default is to spread points out according to
the defined bins)

text - draw 2D grid of number of entries per bin.

* These draw options also work for trees

marcella bona 41

myHist.Draw(“surf”)

| tdedmec fred:-5.2% |

myHist.Draw()

Tdedmed {med:-5.2% |

S22 52) &31 &EZF 52EF SEF AZM AEZD

.21

&2

mmned Inec-5.23 |

tle

Tdedmed {med:5.2: |

52 52) 529 52F 52F 527 S2XB 523

21

%2

- T ™ - - L

1
[-]
¥ = = = o n_ﬂ

52 523 5291 S52F 52F 52T S2ZR 522

21

52

- - r w - o [rs
.mn _nn .u .w. n.__ .u.

myHist.Draw("box”)

)

contz0

myHist.Draw(’

42

marcella bona

myHist.Draw() myHist.Draw(“lego”)

| tdedmed dmec:5.23 | | tledmed fmec:5.2: |

LIS

LLE |

LT

=Dk

-

=D.F

Ly Li
%2 ZE 522 52 52X 52F LFXFE RF7 LZR 523

| tdedwed dmec:5.2% | | tedmed fnec:-5.2: |

LIL)

LU]

0.d

Ll Y]

-0

-IE

Sd S& S22 52 52 £2F 52F O E27 52BN 52D

myHist.Draw(“surf1”) myHist.Draw("text)

marcella bona 43

More on histograms \

It is also possible to change the range of the x-axis that you want to plot a
histogram for using

myHist.SetAxisRange (xMin,h xMax)
where xMin and xMax should be within the range defined in the constructor.

Why don't | see the changes | made to a histogram?
If you modify the settings of a histogram (or marker), you will need to redraw
the object in order for it to be updated on the TCanvas.

Overlaying more than one histogram on a plot

More than one histogram can be drawn on top of each other using
myHist.Draw("same"). This only makes sense if the axes have
matching ranges.

Errors on a histogram:

Bin entries on a histogram are an accumulation of events occurring with a
probability according to a Poisson distribution.

If y\c/>u use myHist.Draw ("e"), ROOT will draw error bars for you, where
o=VN.

marcella bona 44

Now you can: \

* set yourself up to use a given root version

* open a file in root

* access its content

* draw from TTrees and histograms (same works for TGraphs etc)

* The next part of the course is to write a macro that loops over the
events in a TTree and makes some cuts — filling histograms. These
histograms are then written out to a new file. Then you can compile the
code stand-alone and see it run faster.

* For now however I'll go into more detail on histograms and TTrees as
we build towards this goal.

marcella bona

45

Macros

« Lots of commands you’ll want to repeat often just like source files in
terms of programming.
— save them in a “macro” file
— just a bunch of commands in file, enclosed in {...}

* The following is an example of an un-named macro:

{
TFile *myfile = TFile: :Open('"signal.root") ;
myfile->1s() ;
TCanvas cl;
piOmass->Draw () ;
cl.Print("piOmass.eps") ;
}

« You save macros as a C file; e.g. myMacro.cc
actually the extension that you use can be anything but the
convention is to use .cc or .cpp or .CxX

To execute an un-named macro:
root[0] .x myMacro.cc
On doing this ROOT will run all the commands in myMacro. cc.

marcella bona

46

ext editor

« itis really up to you, you can choose whatever text editor you like

» however if in doubt, here is some thoughts and a suggestion:
— it is useful if your text editor knows about C++
l.e. it recognises that you are writing C++ code
— it is useful to have a text editor that you can use “in shell”
to edit directly on the computer you are accessing online
— one such an editor is called emacs (or xemacs)
« it is very powerful and real geeks can do amazing things with it
» however it is usable in a plain and simple way

— try to write in the students2 shell
» emacs —-nw myMacro.cc

marcella bona

47

Text editor \

This opens the file within the shell you are already using: nw==no window

*myfile = ::0pen(J)E
myfile->1s();
cl;
pi@mass->Draw();
cl.Print(g

This however needs a little practice as you should learn how to save
and close the file through keyboard sequences of commands.

-UU-:----F1 mymacro.cc All L1 (C++/1 Abbrev)

[ctrl-x]+[ctrl-s] save a file
marcella bona [ctrl-x]+[ctrl-C] close emacs

ext editor

O e d Ql ae D qd
File Edit Options Buffers Tools C++ Help

L BEXEET S @B MAS M E
S

If you just type

TFile *myfile = TFile::0pen()i

> emacCs myMacro .CC myfile->ls();

TCanvas cl;
pidmass-=Draw();
cl.Print(1;

you will open another
window with buttons
and all and that makes
easier to edit

it might however bea |
little slower as you are [J5 ocne o emacs. one component of the CNULins operating syem
Opening Over the EmaCSTutoriaI Learn basic keystroke commands

Emacs Guided Tour Overview of Emacs features at gnu.org
View Emacs Manual View the Emacs manual using Info

n etwork. Absence of Warranty GNU Emacs comes with ABSOLUTELY NO WARRANTY
Copying Conditions Conditions for redistributing and changing Emacs
Ordering Manuals Purchasing printed copies of manuals

To quit a partially entered command, type Control-g.

This is GNU Emacs 23.1.1 (x86_&4-redhat-linux-gnu, GTK+ Version 2.24.23)
of 2015-02-19 on sl6.fnal.gov
Copyright (C) 2009 Free Software Foundation, Inc.

»| Dismiss this startup screen [T Never show it again.
-U:%%- *GNU Emacs* ALl L3 (Fundamental)------------“-----~--~---- -~

-

=] For information about GNU Emacs and the GNU system, type C-h C-a.

marcella bona 49

Macros (Il)

« The following is an example of a named macro:

void hi (void) contains normal C++ code,

{ — functions/classes etc.
cout << “Hello World!” << endl;

}

« |f the macro name is the same as a function then you can run the
macro from the ROOT prompt with

root[0] .x hi.cc

or from the command line with
> root -1 -b —q hi.cc

« named macros like this are #includeable in other named macros:
#include “hi.cc”

marcella bona

Macros (lIl)

included file

e.g. save this as mainFunc.cc

macro entry | #include "hi.cc"

point T~

~
vold mainFunc (void)

{

cout << "calling 1ncluded function" << endl;

the function | _—» 12 ()7
call — | cout << "done" <<endl;

}

You can pass an argument to a named macro
from the command line or ROOT.

Try running the following example:
root hello.cc' ("Your name") '

marcella bona 51

Macros (IV)

To build an analysis, you can build a sequence of macros:

Macros can call and use other macros.

Syntax to load a macro from a file:
gROOT->LoadMacro (“‘myFile.cc”);

formal version of the CINT/Cling command line .. myFile.cc

If you use the function frequently, better to have named macro or
define the function in a header file you can #include from your

Mmacros.

Scope works the same as in C++, anything defined in a macro or
function exists only inside that macro or function.

Complicated analyses should be compiled using gcc or another C++
compiler (to help you debug it and speed up the analysis).

— see later for compiling

marcella bona

52

More on TFiles |

You've already met TFiles — a bit more on how to use them

— Files can contain directories, histograms and trees (ntuples) etc.
— These are ‘persistent’ objects
— In root you make an object persistent by inheriting from TObject

A few file commands/constructors that you've already met:

* Open an existing file (read only)
TFile myfile("myfile.root");

« Open afile to replace it
TFile myfile("myfile.root", "RECREATE");
or append to it:
TFile myfile("myfile.root", "UPDATE");

« Some useful member functions include
TFile: :GetName () ;

TFile::GetTitle () ;
TObject * TFile::Get (const char *)

marcella bona 53

TFiles (I1)

* Open an existing file (read only)
TFile myfile("myfile.root");

 QOpen afile to replace it
TFile myfile("myfile.root", "RECREATE");

or append to it:
TFile myfile("myfile.root", "UPDATE") ;

« Some useful member functions include

TFile: :GetName () ; the object key name
TFile::GetTitle(); ,//’
TObject * TFile::Get (const char *)

marcella bona

/

TObject * -you have to “cast up” the returned object to the
persistent type to be able to use it properly.
This is just what you did earlier with:

TTree * mySignalTree =
(TTree*)signal.Get ("selectedtree")

54

Using TFile::Get()

root [0] TFile signal ("data/signal.root") N
root [1] signal.ls () _
TFile** signal.root Open the file
TFile* signal.root Signa|_root
KEY : cossphericity;1 cossphericity > (This is B°—n°n® Monte
KEY : photonlat; 1 photonlat Carlo simulated data)
KEY : piOmass; 1 piOmass
: . . -
The key type is the root object type ©
KEY: TTree selectedtree;1 Final variables tree
root [2] * cossph = (TH1D*)signal.Get ("cossphericity"); . ’
root [3] * lat = (TH1D*)signal.Get ("photonlat"); Get” the
root [4] * mpi0 = (TH1D*)signal.Get ("piOmass"); 3 histos
in
root[5] mpiO->Draw/() ; memory
root[6] lat->Draw(); Try looking at the histograms
root[7] cossph->Draw() ;
55

marcella bona

How to create a new file \

TFile file ("myNewFile.root", "RECREATE", "comment"); open a new file

any new objects are automatically put in this file (you
can change this behaviour if you don’t want it to happen)

//make some histograms
TH1F aHist ("aHist", "some variable", 10, 0.0, 10.0);
TH2D a2DHist ("a2DHist", "x vs y", 10, 0.0, 1.0, 100, -4.0, 4.0);

// make a new tree containing two scalar variables and an array
Float t x,y;

Int t n[10];

TTree tree("tree", "title");

TBranch * b x = tree.Branch("x", &x, "x/F");
TBranch * b y = tree.Branch("y", &y, "y/F");
TBranch * b z = tree.Branch("n", n, "n[10]/1I");

// do stuff

// dump and close

;i?i;i 8 " | you have to write () a file to save what you have done
' " | It will get closed when it goes out of scope (or is deleted).
marcella bona 56

How to create a new file (ll) \

//make some histograms
TH1F aHist ("aHist", "some variable", 10, 0.0, 10.0);
TH2D aZ2DHist ("a2DHist", "x vs y", 10, 0.0, 1.0, 100, -4.0, 4.0);

// make a new tree containing two scalar variables and an array
Float t x,y;

Int t n[10];

TTree tree("tree", "title");

TBranch * b _x = tree.Branch("x", &x, "x/F");

TBranch * b y = tree.Branch("y", &y, "y/F");

TBranch * b z = tree.Branch("n", n, "n[10]/F") ;

LA

" "

// do stuff (e.g. your selection code)

// persist all objects to a file at the end of the macro
TFile file("myNewFile.root", "RECREATE", "comment");
aHist.Write ()

a2DHist.Write () ;

tree.Write () ; : :
you can also Write () objects to the file to save

file.Write(); what you have done at the end of the macro, just
file.Close(); before things go out of scope

marcella bona 57

Trees |

« ROOT trees (TTree)

— Trees can contain different types of data (e.g. Int_t, Bool t, Float t,
Double _t). The trees have branches (subdirectories).

— Trees also have leaves that represent variables and contain data.
— Trees are optimized to enable fast access to data, and minimize

disk space usage.

 Trees (with leaves but not branches) can be thought of like tables:

— rows can represent individual events

— columns (leaves) represent different event quantities

« Some useful function calls for a TTree:
— Toview the content (variables) in a tree:

— Toinspect event iEvt (print out values of leaves):

— Todraw a distribution of a leaf
— Todraw a 2D distribution of x vs. y
— Todraw x while cutting on y

marcella bona

myTree->Print ()
myTree->Show (1Evt)

myTree->Draw ("variable")
myTree->Draw ("x:y")
myTree—->Draw ("x ", "y>5")

58

Reading data from a tree |

TTree * tree

Float t mes, de, fisher, imass[3];

// set the tree up to fill local var

tree->SetBranchAddress ("mes", &mes);
tree->SetBranchAddress ("de", &de);

tree->SetBranchAddress ("newfish", &f
tree->SetBranchAddress ("imass", imas

(TTree*)file.Get ("selectedtree");

Set the Branch to fill local
variable - you can update
the value to that variable

for any iEvt in the tree

iables

—

isher) ;
S);

// loop over the candidates in the TTree

for (int iEvt = 0O;

{
tree->GetEntry (1Evt) ;
cout <<

// load th

iEvt < tree->GetEntries|();

'candidate i1Evt = " << iEvt

1Evt++)

candidate #iEvt
"\t mes = " << mes << endl;

Load the entry iEvt into the local

The number of events or candidates
in a tree (there is one per call to the
tree->Fill() function).

variables mes, de, fisher & imass

marcella bona

see myRootStuff.cc

59

Building a tree from scratch

// declare variables to use in the tree é@
> Q
Float t X, Vi < j?
- XX K
Int t n[10]; I 2
oS8 $
- >
// make the tree object Q é?
$)

TTree tree("tree", "title");

// set up the tree structure K///

TBranch * = tree.Branch ("x", &x, "the variable x/F");
TBranch * = tree.Branch("y", &y, "the wvariable y/F");
TBranch * = tree.Branch("n", n, "n[10]/1I");

o O O
SN

An array used in this way is a

for(Int t 1 = 0; 1 < 100; 1i++) _ ,
pointer so you don't need the &

{

//do stuff to fill variables with a value

[...]
| fill the tree with another entry
tree.Fill () ; <
you have to set the values of
} X, y and i before doing this

marcella bona 60

ROOT Exercise 2 |

1) Write a macro that takes the name of a file as an input, opens this
and get the tree out of it to loop over (e.g. signal.root etc.)

2) Extend this macro so that you also make a second tree
— this should contain the variables:
mes
de
newfish
— do this while cutting on mes and de such that:
5.2 <mes <5.29
-04<de<04

— loop over the events in the original tree writing those out
that pass the cuts listed to the new tree and save to a new file.

wget https://www.dropbox.com/s/3ciw4ooocts4gif/myRootStuff.cc
wget https://www.dropbox.com/s/f7xjSkmapdepirr/compiledStuff.cc

marcella bona 61

ROOT Exercise 2 |

1) Write a macro that takes the name of a file as an input, opens this
and get the tree out of it to loop over (e.g. signal.root etc.)

2) Extend this macro so that you also make a second tree

— loop over the events in the original tree writing those out
that pass the cuts listed to the new tree and save to a new file.

3/ you can then run your macro from within ROOT:
X myRootStuff.cc("signal.root")

or you can compile and run:
X compiledStuff.cc++("signal.root")

wget https://www.dropbox.com/s/3ciw4ooocts4gif/myRootStuff.cc
wget https://www.dropbox.com/s/f7xjSkmapdepirr/compiledStuff.cc

marcella bona 62

Some more advanced ROOT usage \

* The last exercise made you write the essence of a simple analysis in
root.

* As your analysis gets more complicated you'll probably introduce a few
bugs and write some code that may well take a long time to run.

* When you start doing this — it is worth thinking about compiling your code

to make sure it is robust and at trfie:ime speed up its execution.

» use Makefiles to compile a stand alone application
— faster run time execution
— better error checking at compile time
— get to debug output when things core dump
— introduce you to (simple) Makefiles

marcella bona

63

The Makefile |

use root-config to define libraries and include paths for you

this is a [tab]

/

The Content of a Makefile
LIBE= root-config --1libs"
CFLRAGS= root-config --cflags"
CC=g++
. . set compile
sét compiler options: < .
-g = debugging options
-O# = optimisation
COPTFE-g
! file(s) to compile |

defdhilt: v

$(CC) $(COPT) main.cc -o main $(LIBS) $(CFLAGS)
Clea%m output binary name |

| rm main

marcella bona

targets — e.g. make — compile the default target
make clean — run the clean target

64

In the code to be compiled \

you will need to #include some files to make sure that the stand

alone application finds the necessary declarations

Some useful files are:

TString.h
TFile.h
TTree.h
TChain.h

TH1F.h ...etc...

If you use an object in root then you will need to #include the
corresponding header file e.g.
#include

#include a file for each root
class that you are using

"TFile.h"

#include "TString.h"

etc.

A comprehensive list of classes can be found at:
https://root.cern.ch/root/html/Classindex.html

marcella bona

65

ROOT Exercise 3 |

1) Write a file containing a main function — for example —put
the following in a file called main.cc:

#include <iostream> — include your root macro
#include "myRootStuff.cc" <

using namespace std; / prototype for main

int main(int argc, char * argvl[]):;

main function that

int main (int argc, char * argv[]) D

{ calls the macro
// decode command line arguments entry point
char inputfile[256] = "";

for (int iArg = 1; 1Arg < argc; 1Argt+t)
{

if(!strcasecmp (argv([iArg],"-file")) strcpy(inputfile, argv[++iArg]);
}

// call root stuff in include file
myRootStuff (inputfile);

return 0;

}

marcella bona 66

ROOT Exercise 3 |

2) Now you can make (or gmake), fix any errors and run the application
— the application will be called 'main’
as specified after the —o in your Makefile.

ERRORS -> will stop you being able to compile the program
Warnings = you might have a problem with the way you have written
it is good practice to make sure you don’t have any warnings

3) run the application you have just compiled:
./main —-file signal.root

- If you got stuck with this at any point there are examples of Makefile,
main.cc and myRootStuff.cc in Lectures/macros so you can take a look
at these and play about with them...

entry point:
this is the thing that is called when the system runs a program. For a
C/C++ program this is a function called main. For a ROOT macro, it is
the function with the same name as the macro file.

marcella bona 67

ROOT Exercise 3 \

in case you are having trouble finishing this:
have a look at these two files:

wget https://www.dropbox.com/s/u721qgjhqqced4b3p/Makefile
wget https://www.dropbox.com/s/566dtggxzrbx5fz/main.cc

marcella bona 68

TCanvas and TPad \

Canvas: a graphics window where histograms are displayed

It is very easy to edit pictures on the canvas by clicking and
dragging objects and right-clicking to get various menus.

A ROQOT canvas is a TCanvas object.

the default canvas, c1, is created on first call to Draw () .
This is equivalent to

TCanvas *cl=new TCanvas(“cl”,””,800,600) ;
Update canvas (if you make a change): cl->Update() ;
Tidy up canvas: c1->Clear () ;

Initially, the canvas has one pad which covers the whole canvas
— can use the Divide function to create more than one pad.

marcella bona 69

TCanvas and Tpad (ll) \

* You can split canvas into several TPads, with

canvas->Divide (2, 2) ;
canvas->Divide (nX, nY);

* You can plot different histograms on different pads
* To change the pad you are working with use (where iPad <nXxnY)

canvas—->cd (1Pad)

* Save the contents of the canvas to a file
canvas—->Write ()

* Can save as eps, pdf or png using SaveAs () and Print ()

canvas—->SaveAs (“file.eps”)

canvas—->SaveAs (“file.pdf”)

canvas—->SaveAs (“file.png”)
.etc...

* Also can make TPads by defining the co-ordinates by hand.

marcella bona 70

Example use of a splitting up a
TCanvas into 4 pads

Molionilyiigl aa g g
42 2l 52F 5E) &1 52F 52F RED EEZM 523

(e diwesar | |_toemec meosa) |

ol

TFile f("data/signal.root") F
TTree * tree = “if
(Ttree*) f.Get ("selectedtree")

o4
L¥]
-t | -bd

Qs B N

T T T T T T T
: .
& @
M
=

TCanvas cl("cl") _Mi'a's';L;'zz‘s";z';"gz'a"gz';"gz'.;";z'""""gz';' 4L
cl.Divide (2,2) ;

cl.cd(1l)

tree->Draw ("fde:fmec", "fmec>5.2")

cl.cd(2)

tree->Draw ("fde:fmec", "fmec>5.2", "surf")

cl.cd (3)

tree->Draw ("fde:fmec", "fmec>5.2", "contzO0")
cl.cd(4)

tree->Draw ("fde:fmec", "fmec>5.2", "box")

marcella bona 71

Statistics Box |

 Default placing — top right —

* Various

displayed,

— histogram name, mean, 3000
rms,
over- and under-flows 2000
[i.e. entries out of range]

—

5000

statistics can be
4000

number of entries,

1000

pi0mass2

Nent = 121476
Mean =0.1348
RMS =0.009288

To set up the stats box ol b b b
0.09 0.1 011 012 013 0.14 015 0.16
gStyle->SetOptStat () ; //default setting
gStyle->SetOptStat (0) ; /Ino stats box
hl->Draw(); /lupdate canvas

gStyle->SetOptStat (1111111); //turn all options on
hl->Draw() ;

gStyle->SetOptStat (11) ; //name & #events only
hl->Draw() ;

0.17 0.18

marcella bona

72

Legends \

* TLegend - the key to the lines/histograms on a plot

 E.g. for a two-line histo (h1 and h2):

// TLegend(x1l,vl,x2,vy2,header)

TLegend myLegend (0.1, 0.2, 0.5, 0.5, "myLegend")
myLegend.SetTextSize (0.04);

//AddEntry () : first arg must be pointer
myLegend.AddEntry (&h2, "after cuts", "1");
myLegend.AddEntry (&hl, "before cuts", "1");

myLegend.Draw () ; |_piomass | s
* “I" (lowercase 'L') instructs S0 - 05

ROOT to put a line in the 3000/~

legend. =

3000

mylLegend
2000 —— hefore cuts
1000 ——after cuts

Ll Ll Ll L | Ll L L Ll 1 I I
(?.09 01 011 012 0.2 0.14

015 0.6 0.17 0.18

marcella bona

Text Box |

« Use text box (TPaveText) write on plots, e.g.:

TPaveText *myText = new TPaveText(0.2,0.7,0.4,0.85, “NDC”);

// NDC sets coords relative to pad
myText->SetTextSize (0.04) ;
myText->SetFillColor (0) ; // white background
myText->SetTextAlign (12) ;
myTextEntry = myText->AddText (“Here’'s some text.”);
myText->Draw () ;

» Greek fonts and special characters:

hl->SetYTitle (“B*{0} #bar{B~{0}}”); // must have brackets
hl->SetTitle (“#taur{+}#taur{-1}1"); // to get super/subscript

The special characters that root knows are defined in the TLatex class.
These are very similar to the use of latex maths commands but with

Vo #;e.q.

latex — root not everything is
\tau — #tau available in TLatex

\alpha — #alpha

marcella bona

Symbols known to Tlatex.

N.B. these are all proceeded by a #' symbol.

Lower case

alpha :
beta :
gamma :
delta :
epsilon :
zeta:
eta:
theta :
iota :
kappa :
lambda :
mu:
nu:

Xi:
omicron :
pi:

rho :
sigma :
tau :
upsilon :
phi :
chi:
psi:
omega :

i« w S B o SN B e RS iy o B]

< T » A

4 QT A O Jw

€ = & c

g

marcella bona

Upper case

Alpha :
Beta :
Gamma :
Delta :
Epsilon :
Zeta :
Eta :
Theta :
lota :
Kappa :
Lambda :
Mu :

Nu :

Xi:
Omicron :
Pi:

Rho :
Sigma :
Tau :
Upsilon :
Phi :
Chi:
Psi:
Omega:

b e

Ze>R"—0

= S M" g0 M Z

o HE X S

Variations

varepsilon :

vartheta :

varsigma :

varUpsilon :
varphi :

varomega :

£

a7

S =~

§2

I

4

® 2> U

-
=

x

> #leftrightarrow

|, #Downarrow

#club
#voidn
#leq
#approx
#in
#supset
ficap

#ocopyright

#trademark
#times
#bullet
#voidb

#doublequote

#lbar
#farcbottom

#downarrow

mn w # IV

@

z
|
(
—
®

=

#diamond
#aleph
#geq
#neq
#notin
#isubseteq
#cup
#copyright
#void3
#divide
#circ
#infty
#angle
#cbar
ffarctop
#leftarrow
#otimes

#Leftarrow

<> #Leftrightarrow [] #prod

~

1l

M

IJ

#heart
#Jgothic
#LT
#equiv
#subset
fisupseteq
#wedge
#oright
#AA

ffpm

- #3dots

<

= e o —

#nabla

#idownleftarrow

#topbar
ffarcbar
#uparrow
#oplus
#Uparrow

Z #isum

‘R

S

]

y|
1

|

—

v
—

#spade
#Rgothic
#GT
#propto
#notsubset
#oslash
fvee
#void1

#aa

#

#upoint
#partial
#corner
#ltbar
#bottombar
#rightarrow
#surd
#Rightarrow
#int

75

Fitting 1D Functions \

* Fitting in ROOT based on Minuit (ROOT class: TMinuit)
 ROOT has 4 predefined fit functions, e.g.

gaus: Gaussian function f(x)=p,exp{-"2[(x-p,)/p,]*}
landau: Landau function (seethe literature for a full dfn).
expo: exponential function f(x) = p,exp(p,*x)

polyN: polynomial of order N, N=0, 1, 2, ... 9.

Fitting a histogram with pre-defined functions, e.g.
hl.Fit (“gaus”) ;

User-defined: 1-D function (TF1) with parameters:
TEF1 *myFn =
new TF1 (“myfn”,” [0]*sin(x) +[1]*exp(-[2]1*x)",0,2);

Set param names (optional) and start values (must do):
myFn->SetParName (0, “paramA”) ;
myFn->SetParameter (0,0.75); //start value for param [0]

Fit a histogram:
hl.Fit (Ymyfn”);

marcella bona

76

Fitting \

» Fitting with user-defined functions often requires solving a more
complicated problem. Save the following as a macro called myfunc.cc

double myfunc (double *x, double *par)

{
double arg=0;

if (par[2]!'=0) arg=(x[0]-par[l])/par(2];
return par[0]*TMath: :Exp (-0.5*arg*arqg) ;
}

*double *xis a pointer to an array of variables

— it should match the dimension of your histogram
« double *p is a pointer to an array of parameters

— it holds the current values of the fit parameters
* now try and fit a histogram h1 with your function

.L myfunc.cc

TF1l *fl=new TF1(“fl1”,myfunc,-1,1,3);
hl.SetParameters (10, hl.GetMean (), hl.GetRMS()):
hl.Fit (“£1”);

marcella bona 77

Fitting Il — The Fit Panel |

Current selection: hp=:TH1F

General | Minimizatiun'

™ Besterrars

[T &l weights = 1

™ Empty hins, weights=1
Draws Optians

—Function
Fredefined: Ciperation
Igaus vl |7G' Nop { Add ¢ Conw
BEDE <~
Selected: _._
gaus et Parameters... |
—Fit Seftings
Method
| Chi-sguare # Wser-Defined... |
™ Linear fit
RobUct I 1.00 EI " Mo Chi-square
Fit Options
™ Integral V¥ Use range

™ Imprave fit results
™ fdd to list

yé

[C saME

™ Mo drawing

™ Do not storesdraw
Frint Ciptions

A el

/”

& Default

. Verbnse/“ Cluiet

marcella bona

« Open a fit panel for your histogram with:
myHistogram->FitPanel () ;

Specify the fitting function you want to use in
the text box (has to be one known to ROOT).

Can switch between a x? fit or a likelihood fit.

Can use the slide bar at the bottom to restrict
the fit range to a sub-sample of your data.

To run or re-run a fit press the 'Fit' button.

78

Fitting IV |

« If you have a complicated maximume-likelihood fit that you want to
perform — don’t do this by writing your own fit functions from scratch
in ROOT.

* There is a package (now bundled with ROOT) called RooFit. This is
a fitting package that is written by members of the HEP community to
do complicated analyses.

* There are tutorials on the web.

* | would recommend that you think about using this if you have to do
any unbinned maximum likelihood fit analysis as once you get started
RooFit is a very powerful and flexible tool for easily building very
complicated PDFs to fit to.

* Not addressing this here as it would need another two good hours..

marcella bona

79

TBrowser — the ROOT GUI \

 The TBrowser is the ROOT graphical interface

« It allows quick inspection of files, histograms and trees

 Make one with:
TBrowser tb;

* More formally:
TBrowser *tb = new TBrowser;

 Full details on how to manipulate the browse are in the
ROOT user guide.

marcella bona

80

Using the TBrowser \

o Start in ROOT with:

TBrowser tb;
* Any files already opened will be in the ROOT files directory
* Directory ROOT session started in will be shown too
» Otherwise click around your directories to find your files
* Click to go into chosen directory

* Double-click on any ROOT files you want to look at
(you won’t see an obvious response)

* Now go into the ROOT files directory

» Selected files now there

» Can click around files, directories, trees
« Can view histograms and leaves

marcella bona

81

Summary \

* You've now had a crash course in ROOT... and done some
analysis

* seen histograms and ntuples close up.

* written a simple Makefile to compile your root code to make it
faster

* you will still need to go through all this as there are lots of
information here and you need a little time to assimilate them

* if you want to practice, ask us for data and a project and we
have plenty to give you.. also to allow you to do something
actually interesting :)

marcella bona 82

marcella bona

back-up slides

83

e.g. Setting up the ROOT environment |

You (or your sys-admin) needs to have installed a version of root and to set
the following environment variables:

* ROOTVER - the version number (not strictly necessary)

* ROOTSYS — The ROOT installation directory

* LD LIBRARY_ PATH — where the system looks for libraries

* you also need to append your path with the ROOT bin directory

If you use bash add the following to your .bash_profile.

export ROOTVER=5.34.00

path to root install directory. This will depend on your sysadmin
export ROOTSYS=/users/bona/root/SROOTVER

export PATH=S$SPATH:SROOTSYS/bin:S$SPATH

export LD_LIBRARY_PATH=$ROOTSYS/lib:$LD_LIBRARY_PATH

on Mac OS X you’ll want to comment out the previous line and
uncomment the following.

#export DYLD LIBRARY PATH=SROOTSYS/lib:$DYLD LIBRARY PATH

* Log into a new terminal to see that your shell now knows about root.

marcella bona

84

ROOT exercise 0: making sure you can use root \

« set up your root environment »| €.9. copy the lines like those below
e start a root session: from the example on page 11.

*root —I l

export ROOTVER=5.34.00

path to root install directory. This will depend on your sysadmin
ROOTVER 9 Set as the rOOt export ROOTSYS=/Users/bevan/root/$ROOTVER
version InSta”ed export PATH=$PATH:S$SROOTSYS/bin:$PATH
ROOTSYS — this is the full path export LD LIBRARY PATH=$ROOTSYS/lib:$LD LIBRARY PATH

tO the |nSta” dlreCtory for rOOt # on Mac OS X you’ll want to comment out the previous line and
. # uncomment the following.
LD_LlBRARY_PATH -2 like #export DYLD LIBRARY PATH=SROOTSYS/lib:$DYLD LIBRARY PATH

PATH, but for compiled libraries

* NOW you can play
root -1 -b -gq hello.cc' ("Yourname™") '

marcella bona 85

	HEP Computing Part III ROOT Adrian Bevan
	Aims of this part of the course
	ROOT
	Slide 4
	What is ROOT?
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	CINT commands
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Running ROOT and using h2root
	Some basic concepts
	Slide 22
	ROOT Data Types
	Slide 24
	Tab Completion
	Histograms
	Slide 27
	Slide 28
	NTuples
	Slide 30
	Files
	Files II
	tree print and dump
	Histograms
	exercise 2
	TH1 from a TTree
	TH1 from a TTree (II)
	Colors
	Colors II
	Lines and Markers
	2D histos
	examples 2D
	examples 2D (II)
	More on Histos
	now you can
	Macros
	Slide 47
	Slide 48
	Slide 49
	Named macro
	Calling a macro
	Load a macro
	TFiles
	TFiles II
	get()
	new file
	new file II
	Trees
	Reading data from a tree
	Building a tree
	Slide 61
	Slide 62
	Some more advanced ROOT usage
	The Makefile
	Includes
	ROOT Exercise 4
	Exercise 4
	Slide 68
	TCanvas and TPad
	Slide 70
	Slide 71
	Statistics Box
	Legends
	Text Box
	Slide 75
	Fitting 1D Functions
	Fitting II
	Fitting III – The Fit Panel
	Fitting IV
	TBrowser – the ROOT GUI
	Using the TBrowser
	Summary
	Slide 83
	e.g. Setting up the ROOT environment
	ROOT exercise 1: making sure you can use root

