Direct Searches for Dark Matter with DarkSide: Results and Perspectives

Paolo Agnes University of Houston

7th February 2019 Queen Mary University of London

Dark Matter

P Agnes, Seminar at QMUL, 2019

The search for WIMPs

Dark Matter particles:

- are massive
- are stable
- non relativistic
- interact gravitationally
- electromagnetically neutral

Expected signal for DD: low-energy nuclear recoil

WIMP: Weakly Interacting Massive Particle

The search for WIMPs

Dark Matter particles:

- are massive
- are stable
- non relativistic
- interact gravitationally
- electromagnetically neutral

Expected signal for DD: low-energy nuclear recoil

- Low energy threshold (E < 100 keV)

(~ 1 event/tonne/yr @ 10-47 cm² in noble liquids)

Background suppression

Deep underground Passive/active shielding Low intrinsic radioactivity Gamma background discrimination

WIMP: Weakly Interacting Massive Particle

Direct detection of dark matter (SI)

Noble liquids will cover the high-mass WIMP region

Noble liquids

1- σ Error of WIMP Mass vs SI Cross Section (10 ton*year Xe and 50 ton*year Ar)

1- σ Error of WIMP Mass and SI Cross Section

Noble liquids are suitable targets:

dense, inexpensive, easy to purify
 large ionization/scintillation yields (W~10 eV)
 ER recoil background discrimination

Liquid Xenon

- σ goes as A^2
- radio-purity
- => most sensitive searches

Liquid Argon

- Complementarity: great value in case of an excess
- Pulse Shape Discrimination: ~10⁸ ER rejection operate a detector in a background-free mode
- 1 Bq/kg from ³⁹Ar in atmospheric argon (AAr), limiting factor for dual-phase layout

=> Need to work out a solution for the ³⁹Ar problem!

³⁹Ar is produced in atmospheric argon by **cosmogenic activation**. Beta emitter with endpoint at 565 keV and half life of 269 y. Nominal **activity of atmospheric argon: ~ 1 Bq/kg.**

³⁹Ar is produced in atmospheric argon by **cosmogenic activation**. Beta emitter with endpoint at 565 keV and half life of 269 y. Nominal **activity of atmospheric argon: ~ 1 Bq/kg.**

Dual-phase TPC

Rejection by Ionization/Scintillation

Rejection with Pulse Shape Discrimination

Dual phase liquid argon TPC, through a **staged** approach:

Background suppression

- Ultra-low background materials
- Depleted Liquid Argon
- Low background photo-detectors
- Low background material components

Background identification

- Pulse Shape Discrimination (PSD)

- Ionization/scintillation ratio
- Position reconstruction (surface events)
- Multiple scatters within the TPC

Active Shielding

- Active Neutron Veto
- Water Cherenkov against muons (WCD)

Main goal: background-free exposure

Neutron Background Rejection

DarkSide-50 Liquid Scintillator Veto: 30 tons of PC loaded with TMB. The n capture produces a localized alpha (heavily quenched) and a gamma (BR>90%)

 ${}^{10}\text{B} + n \to \begin{cases} {}^{7}\text{Li} (1015 \text{ keV}) + \alpha (1775 \text{ keV}) & (6.4\%) \\ {}^{7}\text{Li}^{*} + \alpha (1471 \text{ keV}), {}^{7}\text{Li}^{*} \to {}^{7}\text{Li} (839 \text{ keV}) + \gamma (478 \text{ keV}) & (93.6\%) \end{cases}$

The DarkSide-50 experiment

At Laboratori Nazionali del Gran Sasso (LNGS), Italy

Liquid argon TPC 50 kg LAr 19 + 19 3" PMTs Reflectors and TPB coating

Liquid Scintillator Veto (LSV)

30 tons, 2 m radius 110 PMTs (LY = 0.5 pe/keV)

Water Cherenkov Detector (WCD)

1 kt water, 5.5 m radius 80 PMTs

DarkSide-50 operations

PSD parameter: f90 = fraction of S1 in the first 90 ns x10³ Oct 2013: first data with AAr fill **FPrompt/f**₉₀ 1 - S1 LY of 8.0 PE/keV (@41 keV null-field) 35 NR expectation (neutrons and WIMPs 0.9 - excellent electron lifetime (>5 ms) 0.8 30 NR acceptance 0.7 80% 90 25 Feb 2014: first null result (50 days) 0.6 - rejection power of PDS in LAr 20 0.5 Apr 2015: filling with UAr ER: ³⁹Ar 1.5×10^{7} 0.4 15 Jul 2015: end of 70 days campaign 0.3 10 - first use of UAr 0.2 '15-'17: blind data taking and analysis 5 0.1 2018: null results at High- and Low- Mass 0 300 350 400 450 100 S1 [PE] 2400 **External calibrations:** Internal calibrations: 2200 ^{83m}Kr peak (41.5 keV) LSV 2000 ⁵⁷Co, ¹³³Ba, ¹³⁷Cs (γ) ^{83m}Kr, ³⁹Ar 1800 AmBe, AmC (n) 1600 1400 1200 TPC ³⁹Ar spectrum (565 keV end point) 1000 800

1000

2000

3000

4000

5000

6000

7000

S1 [PE]

Entries

600 400 200

0

P Agnes, Seminar at QMUL, 2019

G4DS

NR calibration: the ARIS experiment

Main goal: L_{eff} at low energy (scintillation efficiency of NR's)

n,γ

D1 neutrons selected by TOF and ND PSD cuts. **D2 gammas**, correlated to the beam.

NR calibration: the ARIS experiment

Main goal: L_{eff} at low energy (scintillation efficiency of NR's)

n,γ

Expose a small scale TPC to a **pulsed**, **collimated**, **monochromatic** neutron beam (LICORNE @IPNO, Paris), coupled with 8 neutron detectors, to fix NR energy by kinematics.

D1 neutrons selected by TOF and ND PSD cuts. **D2 gammas**, correlated to the beam.

Precise measurement of L_{Eff} parameter down to 7.1 keV_{NR}.

Linearity of LAr response to ER at null field assessed within 1.6% using the Compton induced single ER and external calibration sources

ARIS: Field dependence, NR

S1^F/S1⁰ (E) = (α + R(E)) / (1 + α)

Fixing α = 1 to break the degeneracy between **R** and α (do not measure charge).

The Thomas-Imel model is favored

Thomas-Imel also describes the field induced scintillation quenching with $b \sim 1$ and $C \sim 18.5$. N_i is number of free ions.

$$R = 1 - \frac{ln(1+\xi)}{\xi} \qquad \qquad \xi = C_{box} \frac{N_i}{F^\beta} \qquad \qquad \mbox{F: field}$$

ARIS: Field dependence, ER

S1^F/S1^o (E) = (α + R(E)) / (1 + α)

Testing the **model** developed for **DarkSide**.

For **E >20 keV**, **Doke-Birks** model fits well (fails at low E) and describes field dependence.

$$R = \frac{A \ dE/dx}{1 + B \ dE/dx} + C \underline{e^{-D \times F}}$$

A ~ 2.5E-3 cm/MeV C ~ 0.77 B ~ A/(1-C) D ~ 3.5E-3 cm/V A ~ 2.5E-3 cm/V A comprehensive effective model for the response of LAr to ER and NR is available in the energy range of interest for WIMP searches

High-mass analysis

532 days exposure, **blind analysis.** Goal: draw the contours of WIMP search region by requiring 0.1 surviving bg events in the full exposure

single sited events **500 days dataset**

High-mass analysis

532 days exposure, **blind analysis.** Goal: draw the contours of WIMP search region by requiring 0.1 surviving bg events in the full exposure

Tune models and MC on open:

- 70 days UAr dataset
- 50 days AAr dataset
- calibration data

Main backgrounds are: internal and external β and γ 's surface α 's cosmogenics and radiogenic neutrons γ + Cherenkov

High-mass analysis - NR background

Radiogenic neutrons tagged by the veto. Efficiency: estimated with G4DS and measured with external n sources

Cosmogenic n background simulated with FLUKA + G4DS. Tagged by vetoes

High-mass analysis - ER background

Test box satisfy the requirements:

Background	Estimated survivors
Surface α	0.001
Cosmogenic n	<0.0003
Radiogenic	<0.005
ER	0.08
Total:	0.09±0.04

NR acceptance is 70% at 80 keV_{NR} Fiducial mass is 31 kg (47 kg active)

Quality +Trgtime +S1sat

- Trigtime: the first pulse is within expected trigger time window
- S1sat: S1 pulse is not saturated

+40µs fid

- Single S2 Pulse (S1 + S2) and 40µs fid: remove 40µs from top and bottom in t_drift
- Lots of \screws from PMTs, unresolved S1+S2 events, and surface close to top are removed

- S1pmf: fraction of prompt light in the maximum PMT is less than a threshold, which is a function of t_drift and S1
- Remove S1+Cherenkov events from fused silica windows

fPrompt

..... a few other cuts are applied in turn

- a few other cuts are applied in turn
- Only radial cut is missing

• R 2: Radial cut as a function of t_drift

+R 2

• The threshold at about 50 keV_{NR} is due to the **Pulse Shape Discrimination Effieciency**

Sensitivity and threshold

How to lower the threshold?

Look at the **ionization only** spectrum ($W_{ion} = 23.5 \text{ eV}$, multiplication in the gas: 23 PE/e⁻)

Below 3 keV_{ee}: give up the scintillation signal (too small to trigger the detector), and thus - **minimal fiducialization** (only radial)

- no hope for ER/NR discrimination (nor PSD nor S2/S1)

How to lower the threshold?

Look at the **ionization only** spectrum ($W_{ion} = 23.5 \text{ eV}$, multiplication in the gas: 23 PE/e⁻)

Ionization yield, NR

Calibrate NR with **AmC**, **AmBe** neutron sources

Bezrukov model fit at low energy. Two free parameters to describe quenching and recombination probability of e- / ions. *Ref: Astropart. Phys. 35, 119 (2011).*

Extrapolation at high energy in agreement with ARIS and other datasets

DarkSide for low-mass WIMPs

MC spectra in the low energy region, converted in N_{e-} (ER). Activities constrained to the results of fit at high energy.

WIMP induced spectra in N_{e-} (NR); PLL analysis.

Un-modeled component(s) below 7 e-: impurities (+ radiogenic neutrons?)

The extracted limit(s)

Best limit in [1.8, 6] GeV/c² mass range

Need a measurement to determine quenching fluctuations

Towards DarkSide-20k

- 1) Shown potential of LAr at low WIMP mass
- 2) DarkSide-50 performed a **background-free** WIMP search
- necessary for a **discovery** program
- thanks to pulse shape discrimination (LAr only)

DarkSide-50, **DEAP**, **ArDM**, **MiniCLEAN** formed the **Global Argon Dark Matter Collaboration** (GADMC) to reach the neutrino floor.

Towards DarkSide-20k

- 1) Shown potential of LAr at low WIMP mass
- 2) DarkSide-50 performed a **background-free** WIMP search
- necessary for a **discovery** program
- thanks to pulse shape discrimination (LAr only)

DarkSide-50, **DEAP**, **ArDM**, **MiniCLEAN** formed the **Global Argon Dark Matter Collaboration** (GADMC) to reach the neutrino floor.

DarkSide-20k is the next step: 40 t (20 t) active (fiducial) UAr

>100 t yr (instrumental) bg free UAr exposure

Expected 1.5 ev in 100 t yr from neutrinos (CNNS).

Based on:

- Extraction of 50 t of UAr
- Hosted in a 700 t LAr **ProtoDUNE cryostat** (move material away from the active volume)
- Instead of PMTs: SiPM arrays!

SiPM tiles

Main novelty: the light readout system (FBK)

RUNO KESSI FI

- intrinsically radio-pure
- improved detection efficiency

PDE > 40% O(10 ns) timing resolution <250 Hz dark rate + correlated noise

Preliminary G4DS:

Need 350 of these...

DS20k and DS-Proto

DarkSide-20k

> 25 m² of SiPM required
9000 ch in the TPC and 3000 in the veto

Currently optimizing the **veto geometry** (efficiency to detect neutron capture) and **PE-DAQ** (rate in TPC is ~ 100 Hz, but high digitization rate. Rate in veto is 100 kHz)

Data taking expected for 2022

DarkSide-Proto

400 channels in the TPC.

Mechanical test at first. Then a fully functional TPC with all the channels (LY, resolution, XY)...

Now: start from this design for low-mass WIMP search? Priority is reduce the internal rate

Start construction in 2019 at CERN

Projection for the future

DarkSide-50 is operated since 2013 and provided interesting results for both low- and high-mass WIMPs.

They:

- asses that the ³⁹Ar content in UAr is sufficiently low to construct a large dual-phase TPC
- demonstrate that a LAr dual-phase detector can be operated in a bg free condition
- show the potential of LAr at low-mass

Those represent important milestones towards the construction of DarkSide-20k (taking data by 2022).

Ritratto di Signor Sfera

- goal of 100 t yr instrumental background free exposure
- joint effort of the LAr DM community (DEAP, ArDM, CERN NP...)
- novel light readout system (SiPM exciting data are coming soon)

By S.Walke

few